Skip to main content
ARS Home » Research » Publications at this Location » Publication #257643

Title: Metals Solubility in Biochar from Different Feedstock and Pyrolysis Processes

item HASS, AMIR - West Virginia State University
item Gonzalez, Javier
item Lima, Isabel
item Boateng, Akwasi
item PATEL, DHARMESH - West Virginia State University
item Lamb, Joann
item Anderson, William - Bill
item NELSON, NATHAN - Kansas State University

Submitted to: Geological Society of America Meeting
Publication Type: Abstract Only
Publication Acceptance Date: 8/30/2010
Publication Date: N/A
Citation: N/A

Interpretive Summary:

Technical Abstract: Biochar is a co-product of the pyrolysis process of biomass-to-energy conversion. About 15-40% of the feedstock is recovered as biochar in the process. Further use of biochar in soil is suggested as a means to increase soil productivity, and to store and sequester much of the biochar-recalcitrant carbon. Yet, biochar application may result in elevated levels of soluble and bio-available metals, adversely affecting soil biota and downstream water quality and ecosystem. In this study we evaluated metals (Al, Ca, Cu, Cr, Fe, K, Mn, Mo, Mg, Na, Ni, and Zn) content and solubility in biochar from different pyrolysis processes and feedstock, including plant residue and chicken litter. Chicken litter was processed at 350 or 700 degrees Celsius in a slow pyrolysis; additional chicken litter, alfalfa (Medicago sativa L.) stem, bamboo (Phyllostachys aureosulcata), miscanthus (Miscanthus x giganteus), and sorghum (Sorghum bicolor) feedstock were processed in fast pyrolysis at 450-500 degrees Celsius. Subsamples of all biochars were further steam-activated at 800 degrees Celsius. Total, water, AB-DTPA (ammonium bicarbonate diethylene triamine pentaacetic acid), Mehlich-3 (a soil nutrient extraction), and SPLP (synthetic precipitation leaching procedure; EPA Method 1312) extractable metals were determined. Mean metal enrichment factor by pyrolysis (i.e. metal concentration in biochar/metal concentration in feedstock) was 2.5+/-0.7. Metal enrichment by subsequent biochar activation (i.e. metal concentration in activated-biochar/metal concentration in biochar) was temperature dependent, increasing for metals in biochar produced at 350 degrees Celsius (ranging from 1.3 to 1.7) while having minor changes for the metals in biochar produced at 700 degrees Celsius (ranged from 0.92 – 1.03). Though metals concentration in water was feedstock dependent, their solubility decreased in the order alkali metals > alkaline earth metals > transition metals. While feedstock’s alkaline earth and transition metals solubility in SPLP and Mehlich-3 decreased upon pyrolysis and biochar activation, K solubility increased. Depending on feedstock, pyrolysis processing and activation, biochar may contribute soluble and bio-available metals. Hence, understanding the impact of feedstock, pyrolysis process, and biochar activation on metal solubility are important factors in controlling and alleviating biochar input.