Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: GMAX Yeast Background Strain Made from Industrial Tolerant Saccharomyces Cerevisiae Engineered to Convert Pretreated Lignocellulosic Starch and Cellulosic Sugars Universally to Ethanol Anaerobically)

item Hughes, Stephen
item Takaki, Ken
item Moser, Bryan
item Doll, Kenneth - Ken
item Butt, Tauseef
item Sterner, David
item Bischoff, Kenneth
item Hector, Ronald - Ron
item Jones, Marge
item Bang, Sookie

Submitted to: Meeting Abstract
Publication Type: Abstract only
Publication Acceptance Date: 4/21/2009
Publication Date: 4/21/2009
Citation: Hughes, S.R., Tasaki, K., Moser, B., Doll, K., Butt, T., Sterner, D., Bischoff, K., Hector, R., Jones, M., and Bang, S. 2009. GMAX yeast background strain made from industrial tolerant Saccharomyces cerevisiae engineered to convert pretreated Lignocellulosic starch and cellulosic sugars universally to ethanol anaerobically [abstract]. Cambridge Healthtech Institute, Advanced Biofuels Development Summit. Abstract No. 2. p. 3.

Interpretive Summary:

Technical Abstract: Tailored GMAX yeast background strain technology for universal ethanol production industrially: Production of the stable baseline glucose, mannose, arabinose, xylose-utilizing (GMAX) yeast will be evaluated by taking the genes identified in high-throughput screening for a plasmid-based yeast to utilize xylose and glucose anaerobically for ethanol production. The use of the xylose isomerase gene from Piromyces in combination with a modified xylulokinase gene from bacteria plus the anaerobic growth genes from S. cerevisiae allowed anaerobic growth on xylose and glucose simultaneously for cellulosic ethanol production and to be the background strain for other co-product gene expressions such as a lipase or an insecticidal genes. The resulting stable transformed plasmids into any industrial yeast strains of Saccharomyces cervisiae that are already tolerant to environments in the production biorefinery are being developed for universal ethanol production from any feedstock provided. Initially a cellulosic strain will be produced with XI, XKS, and one or more of the anerobic xylose utilization genes for use on acid or base hydrolysates.

Last Modified: 8/24/2016
Footer Content Back to Top of Page