Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: IMPROVING IRRIGATION MANAGEMENT FOR HUMID AND SUB-HUMID CLIMATES

Location: Cropping Systems and Water Quality Research

2013 Annual Report


1a. Objectives (from AD-416):
Objective 1: Evaluate and optimize production systems for irrigated cotton, corn, and rice to optimize WUE under variable weather conditions that are expected to become more variable with impacts of climate change while considering the constraints of timing for field operations, a limited growing season, and increasingly limited water supplies. 1a: Determine crop coefficient for sprinkler irrigated rice. 1b: Determine water/yield relationships for sprinkler-irrigated rice and cotton. 1c: Compare drought-tolerant corn hybrids to those currently grown. 1d: Develop database of water use variation among rice production systems. Objective 2: Evaluate the suitability of variable-rate center pivot irrigation for crop production on variable soils and in varying weather conditions to determine potential costs and benefits for producers. 2a: Determine the utility of soil apparent electrical conductivity (ECa) and topographic variables for defining management zones to develop prescriptions for VRI management. 2b: Determine the optimum irrigation schedule for rice under center pivot irrigation over a range of sand contents. Objective 3: Evaluate the quality of runoff from irrigated cropland to determine current and potential environmental risks and develop guidelines and BMPs to reduce impact of irrigated agriculture on water quality degradation. 3a: Determine nutrient content of runoff from surface drained land in the lower Mississippi River basin. 3b: Develop guidelines for fertigation for center pivots in humid and sub-humid regions. 3c: Determine greenhouse gas (GHG) emissions associated with different water management strategies for rice production and options for reducing. 3d: Develop a variable source N application system utilizing controlled release nitrogen (CRN) technology to reduce N losses in furrow irrigated cotton.


1b. Approach (from AD-416):
Evaluate and optimize production systems for irrigated cotton, corn, and rice to optimize WUE under variable weather conditions that are expected to become more variable with impacts of climate change while considering the constraints of timing for field operations, a limited growing season, and increasingly limited water supplies. Evaluate the suitability of variable-rate center pivot irrigation for crop production on variable soils and in varying weather conditions to determine potential costs and benefits for producers. Evaluate the quality of runoff from irrigated cropland to determine current and potential environmental risks and develop guidelines and BMPs to reduce impact of irrigated agriculture on water quality degradation.


3. Progress Report:
This report documents progress for Project Number 3622-13610-003-00D, which started in April 2012 and includes objectives from both Agricultural Research Service (ARS) and University of Missouri (MU) scientists. Under ARS leadership: (1) Determined from 2012 study comparing standard and drought-tolerant corn hybrids that the location was not acceptable, identified new field, and addressed drainage problems exposed during extremely wet spring; modified sensor suite adding new infrared thermometer and reflectance sensors requiring new data-collection program; built and field tested new sensor-mounting system and a smaller sensor suite used to collect data in corn study addressing fertility, plant population, and irrigation; and continued investigating impacts of land grading. Worked with collaborators at University of Arkansas and ARS to compile and analyze 10 years of on-farm rice water use data. (2) Converted diesel-powered variable rate irrigation (VRI) center pivot system to electricity and upgraded pumping plant, replacing existing diesel power unit and line-shaft turbine pump with submersible electric pump, variable frequency drive, and remote monitoring and control system. Sensors for monitoring electric power were obtained to supplement sensors for pressure, flow, and depth-to-water. (3) Maintained runoff samplers and collected continuous stage and flow information from three southeast Missouri sites. Determined that more stable site was needed for Ditch 42, identified suitable site, moved and secured equipment, and installed fix to address rodent chewing on sampling tubes. Through a specific cooperative agreement with MU (see also 3622-13610-003-01S): (1) Initiated test using VRI to evaluate irrigation treatments for center pivot irrigated rice and cotton based on evapotranspiration calculated from on-site weather station data. Center pivot with VRI technology was evaluated for application uniformity within and between adjacent zones and zonal application depth when changing application percentages; findings were reported in poster presentation and corresponding proceedings article for 2013 American Society of Agricultural and Biological Engineers (ASABE) Annual International Meeting. (2) Cotton measurements of spatially referenced canopy properties continued in ongoing studies. Results from three year study were compiled and analyzed and findings were presented in oral presentation and corresponding proceedings article for 2013 ASABE International Meeting. The article is being expanded for submission to Applied Engineering in Agriculture. (5) On-farm studies were conducted to evaluate effectiveness of controlled release nitrogen (CRN) fertilizers relative to traditional nitrogen programs for furrow irrigated cotton. Additional study compares nitrogen content in runoff water between urea- and CRN- fertilized cotton plots. (6) Fifteen years of data from annual Bootheel Irrigation Survey indicated fertigation increased corn yield by 12 kg/ha. Related studies evaluated model to calculate crop coefficient values from local weather files; and indicated average 15 kg/ha yield increase when corn followed soybeans.


4. Accomplishments


Review Publications
Vories, E.D., Stevens, W.E., Tacker, P., Griffin, T.W., Counce, P.A. 2013. Rice production with center pivot irrigation. Applied Engineering in Agriculture. 29(1):51-60.

Oliveira, L.F., Scharf, P.C., Vories, E.D., Drummond, S.T., Dunn, D.J., Stevens, W.E., Bronson, K.F., Benson, N.R., Hubbard, V.C., Jones, A.S. 2013. Calibrating canopy reflectance sensors to predict optimal mid-season nitrogen rate for cotton. Soil Science Society of America Journal. 77(1):173-183. DOI: 10.2136/sssaj2012.0154.

Last Modified: 10/18/2017
Footer Content Back to Top of Page