Skip to main content
ARS Home » Northeast Area » University Park, Pennsylvania » Pasture Systems & Watershed Management Research » Research » Research Project #428423

Research Project: Mitigating Emissions and Adapting Farm Systems to Climate Variability

Location: Pasture Systems & Watershed Management Research

Project Number: 8070-11130-003-00-D
Project Type: In-House Appropriated

Start Date: Nov 1, 2015
End Date: Nov 19, 2018

Objective:
1. Quantify and develop practices to reduce the emission of greenhouse gases and pollutants from animal production systems. 1a. Measure greenhouse gas emissions from crop and pasture lands and the reductions obtained through mitigation treatments. 1b. Refine and evaluate emission models for improved prediction of greenhouse gas emissions and mitigation strategies for animal, manure, crop, and pasture components of livestock production. 1c. Evaluate the impact of improvements in animal production facility infrastructure on greenhouse and other gas emissions and water quality. 2. Determine the sensitivity of farm systems and watersheds to climate variability and evaluate strategies for adapting to climate change. 2a. Quantify the effects of projected future climate on dairy and beef production systems and determine the adaptation strategies required to maintain sustainable production systems under future climate variability. 2b. Quantify the effects of projected future climate on nitrogen and phosphorus transformations and losses for watersheds in the Northeast. 2c. Support Northeast Climate Hub activities by developing and providing information on regional climate research and extension capacity, stakeholder vulnerability assessments, and adaptation strategies for the dairy and beef industries including animal, field crop, hay and pasture production, and ecosystem services. 3. Quantify the sustainability of beef and dairy production systems through life cycle assessment and prioritize areas for improvement. 3a. Document production practices and determine farm-gate environmental footprints for beef cattle production throughout the United States. 3b. Evaluate the environmental and economic impacts of alternative practices of milk production in important dairy regions of the United States.

Approach:
Long-term monitoring of carbon dioxide and nitrous oxide emissions will be conducted in support of Long Term Agro-ecosystem Research (LTAR). University Park is part of the recently-formed Dairy Agroecosystem Working Group (DAWG) along with ARS units in Idaho, Minnesota, and Wisconsin. DAWG has adopted a framework in concert with the LTAR network to provide data, technologies and decision support tools that enable dairy producers to adapt to current and future production and environmental demands. Air and water quality impacts, environmental footprints, and farm economic viability of dairy production systems will be assessed through detailed case studies of geographically distinct dairy production systems in each of our regions. Development and evaluation of farm-scale models [Integrated Farm System Model(IFSM) and DairyGEM] will continue. As new process information becomes available, component models used to predict emissions will be revised and evaluated to improve prediction accuracy. Mitigation strategies will be simulated and evaluated to assess interactions within and overall impacts on farm production systems. Empirically downscaled daily climate files will be developed by collaborators at Texas Tech University for approximately 80 cattle producing locations of the U.S. using 9 climate models and two long term greenhouse gas emission scenarios (current emission levels, RCP=8.5 and reduced emission levels, RCP=4.5). Representative dairy farms will be simulated using IFSM with current and projected future climate, and adaptation strategies will be determined to maintain profitable and environmentally sustainable production. The downscaled climate files will also be used to model two watersheds (one karst, one non-karst) in the Ridge and Valley physiographic region of the Upper Chesapeake Bay Basin. Current practices will be simulated using historical climate data and a modified version of the Soil and Water Assessment Tool, called TopoSWAT. These same regional watersheds will then be simulated under management practices described in the Bay Watershed Implementation Plan’s (WIPs) for meeting the Chesapeake Bay Loading Reduction goals of 2025. Collaboration continues with the National Cattlemen’s Beef Association in a national assessment of the sustainability of beef. Producer surveys and visits are being conducted for each of seven geographic regions to determine common production practices. Representative cattle operations are defined and simulated with IFSM to quantify the performance and farm-gate environmental impacts of production systems in each region. This information will be used in regional and national life cycle assessments to benchmark the environmental footprints and overall sustainability of beef production. Information developed will be used to support the Northeast Climate Hub. In collaboration with Climate Hub university partners, surveys and stakeholder interviews will be conducted to determine perceived challenges relating to climate change and variability and information needs to meet those challenges. A climate adaptation workbook developed by the US Forest Service will be modified for use on agricultural lands.