| SWRC Scientific Modelling |
|

Download AGWA
|
Planning and assessment in land and water resource management are evolving from simple, local-scale problems toward complex, spatially explicit regional ones. Such problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extensive data requirements and the difficult task of building input parameter files, however, have long represented an obstacle to the timely and cost-effective use of such complex models by resource managers.
- The USDA - ARS - Southwest Watershed Research Center, in cooperation with the U.S. EPAOffice of Research and DevelopmentLandscape Ecology Branch, the University of Arizona, and the University of Wyoming, has developed a GIS tool to facilitate this process. A geographic information system (GIS) provides the framework within which spatially-distributed data are collected and used to prepare model input files and evaluate model results.
AGWA uses widely available standardized spatial datasets that can be obtained via the internet. The data are used to develop input parameter files for two watershed runoff and erosion models: KINEROS2 and SWAT.
List of AGWA tutorials: https://www.youtube.com/channel/UCNsUT54S36evimKEfmY2CrQ/videos
|

Download KINEROS |
The kinematic runoff and erosion model KINEROS is an event oriented, physically based model describing the processes of interception, infiltration, surface runoff and erosion from small agricultural and urban watersheds. The watershed is represented by a cascade of planes and channels; the partial differential equations describing overland flow, channel flow, erosion and sediment transport are solved by finite difference techniques. The spatial variation of rainfall, infiltration, runoff, and erosion parameters can be accomodated. KINEROS may be used to determine the effects of various artificial features such as urban developments, small detention reservoirs, or lined channels on flood hydrographs and sediment yield.
|

Access RHEM Web Tool
|
The Rangeland Hydrology and Erosion Model (RHEM) is designed to provide sound, science-based technology to model and predict runoff and erosion rates on rangelands and to assist in assessing rangeland conservation practices effects. RHEM is a newly conceptualized, process-based erosion prediction tool specific for rangeland application, based on fundamentals of infiltration, hydrology, plant science, hydraulics and erosion mechanics.
|

Access RaBET |
The Rangeland Brush Estimation Toolbox (RaBET) can be used to estimate canopy cover of woody plants on rangelands, today or in the past. RaBET is a true field-scale assessment of changes in woody plant cover over time. You can use it to determine where brush treatments may be needed, the long-term results of brush treatments you have already done, and where more treatments may be needed.
|
Available as a Virtual Web Server - download HERE |
Global warming is expected to lead to a more vigorous hydrological cycle, including more total rainfall and more frequent high intensity rainfall events. Rainfall amounts and intensities increased on average in the United States during the 20th century and, according to climate change models, they are expected to continue to increase during the 21st century. These rainfall changes, along with expected changes in temperature, solar radiation, and atmospheric CO2 concentrations, will have significant impacts on soil erosion rates. The processes involved in the impact of climate change on soil erosion by water are complex, involving changes in rainfall amounts and intensities, number of days of precipitation, ratio of rain to snow, plant biomass production, plant residue decomposition rates, soil microbial activity, evapo-transpiration rates, and shifts in land use necessary to accommodate a new climatic regime. WEPPCAT is a web-based erosion simulation tool that allows for the assessment of changes in erosion rates as a consequence of user-defined climate change scenarios. This tool is based on the USDA-ARS Water Erosion Prediction Project (WEPP) erosion model. It has the capability of taking into account all of the erosion-affecting processes listed above.
|
Access the Earthwork Structures of the Southwestern USA Inventory |
This inventory was conducted using 1-m LiDAR derived DEM hillshades where available and confirmed using high-resolution aerial imagery. Earthworks are easily identified in hillshades from the characteristic shapes (linear or round) that are not naturally occurring in these landscapes. Most earthworks are also identifiable in high-resolution imagery because of the shadows from the topography and the associated impacts to local vegetation, which highlight the topographic shape. Some earthworks may have been missed if their size, height, or the local topography make them harder to distinguish from natural terrain. Other earthworks may have been missed due to obstacles in imagery or elevation data or random error associated with manual identification.
|