Skip to main content
ARS Home » Northeast Area » Orient Point, New York » Plum Island Animal Disease Center » Foreign Animal Disease Research » Research » Research Project #431806

Research Project: Ecology of Vesicular Stomatitis Virus (VSV) in North America

Location: Foreign Animal Disease Research

Project Number: 8064-32000-059-00-D
Project Type: In-House Appropriated

Start Date: Oct 27, 2016
End Date: Oct 26, 2021

Objective:
1. Ascertain the viral ecology of disease and factors mediating the emergence of VSV, including the characterizing epidemiological factors associated with the maintenance of disease in endemic versus non-endemic settings (ABADRU) and (FADRU), determining the environmental conditions that influence vector dominance in endemic versus non-endemic settings, and identifying environmental-vector interactions responsible for the emergence of viral infections in new geographical locations. 1.A. Characterize epidemiological, biotic and abiotic factors associated with the emergence and transmission of VSV in endemic versus non-endemic settings. 2. Develop intervention strategies to minimize the impact of VSV disease outbreaks. 2.A. Develop means to detect and characterize emergent VSV strains and use these data to generate models that predict future outbreaks. 2.B. Identify vector transmission control strategies based on our understanding of vector-host interactions. 3. Ascertain the viral ecology of disease and factors mediating the emergence of VSV, including factors associated with the maintenance of disease, determining the environmental conditions that influence vector dominance in endemic versus non-endemic settings, and identifying environmental-vector interactions responsible for the emergence of viral infections in new geographical locations. 4. Establish research program on Crimean Congo Hemorrhagic Fever (CCHF) and Nipah Virus Disease (NiVD), including development of detection and diagnostic in vectors and hosts as well as studying mechanisms of inter-species transmission.

Approach:
1. A comprehensive analysis of VS outbreaks occurring in the U.S. from 2004-2016 will be conducted to determine the relationship between the geographical location of premises reporting VS outbreaks and the spatial and temporal variability in a large suit of ecological variables. Multiple data streams involving disease occurrence and ecological conditions will be obtained from multiple sources and harmonized for integration and analysis. These data sources include; a) outbreak occurrence data inclusive of geo-location, host species, number of animals affected and onset date, b) ecological data analysis c) biotic and abiotic variables inclusive of animal density, hydrological features and streams, elevation and surface water properties, air temperature and precipitation, vegetation ENSO (El Nino Southern Oscilation) data, soil properties and long term trends in environmental variables. . These data will be harmonized and univariate and multivariate statistical analysis will be conducted to determine the best set of explanatory variables for temporal and spatial patterns. These analyses will be used to identify ecological variables associated with VS disease occupancy and spread in the western U.S. and to develop predictive models for disease spread. 2. The characterization of VSV transmission in endemic vs non-endemic settings will be conducted in collaboration with Mexico’s SENASICA-EADC laboratory to conduct genomic sequencing and phylogeographic characterization of viral strains collected through VS surveillance activities in Mexico and to identify the ecological and environmental factors associated with the occurrence of VSV in Mexico. A collaboration with USDA-APHIS will established to determine the phylogeopraphic characteristics of VSV strains causing outbreaks in the U.S. This information will be used to create predictive models for VSV occurrence. 3. A comprehensive analysis of VS outbreaks occurring in the U.S. will be conducted to determine the relationship between geographical location of premises reporting VS outbreaks and spatial and temporal variability in a large suit of ecological variables. Ecology studies in the sw US will be expanded to include endemic areas in Mexico and environmental-vector interactions responsible for the emergence of viral infections in new geographical locations. These data will be harmonized and statistical analysis will be conducted to determine the best set of explanatory variables for temporal and spatial patterns. These analyses will be used to identify ecological variables associated with VS disease emergence, re-emergence and spread in the western U.S. and to develop predictive models for disease spread. 4. A new research program will be started at the Centers for Disease Control and Prevention on CCHF and NiVD. Research scientists will be embedded within existing research programs to develop expertise working in biosafety level 4 facility, develop necessary reagents and methodologies for studying virus host interaction in livestock species. Initial work will focus on molecular detection tools, reverse genetics systems, immunological reagents for studies in small animal models.