Skip to main content
ARS Home » Northeast Area » Wyndmoor, Pennsylvania » Eastern Regional Research Center » Dairy and Functional Foods Research » Research » Research Project #428754

Research Project: Effect of Processing of Milk on Bioactive Compounds in Fresh High-Moisture Cheeses

Location: Dairy and Functional Foods Research

Project Number: 8072-41000-097-00-D
Project Type: In-House Appropriated

Start Date: Apr 13, 2015
End Date: Apr 12, 2020

Objective:
1: Integrate non-thermal milk processing technologies with replacing sodium with potassium during cheesemaking to determine the effects on quality traits, shelf-life, and bioactives of fresh high moisture cheeses, Queso Fresco and dry cottage cheese. 1.a: Characterize the effects of NTP, with and without heat, on the chemical, microbiological, and physical properties of milk. 1.b: Optimize cheesemaking protocols using NTP-modified milk. 1.c: Characterize the effects of NTP of cheesemilk and altering the Na-K levels on the chemical, microbiological, sensorial, functional, textural, rheological, and structural properties of aging low-sodium cheese. 2: Enable non-thermal milk processing technologies that alter protein-fat interactions on milk enriched with long-chained polyunsaturated fatty acids (PUFA) during cheesemaking to assess their impact on quality traits, shelf-life, and bioactives of fresh high-moisture cheeses, Queso Fresco and dry cottage cheese. 2.a: Characterize the chemical and physical properties of PUFA-enhanced fractions. 2.b: Characterize the effects of NTP, with and without heat, on the chemical, microbiological, and physical properties of PUFA-enhanced milk. 2.c: Characterize the effects of NTP of PUFA-enhanced cheesemilk on the chemical, microbiological, sensorial, functional, textural, rheological, and structural properties of aging cheese. 3: Integrate the impact of non-thermal milk processing on cheeses made in Objectives 1 and 2,with bioactive peptide formation during aging and in vitro digestion. 3.a: Characterize the effects of NTP on proteins and peptides in milk. 3.b: Characterize the effects of NTP on the formation of bioactive peptides in aging cheese and during in vitro digestion.

Approach:
This study focuses on the incorporation of non-thermal processes (NTP) that use high pressure homogenization (microfluidization) or ultra-high frequencies (ultrasonication) in the manufacture of high-moisture cheeses with unique textures, such as Queso Fresco (QF) and dry curd cottage cheese (CC). A combination of treatments, including NTP with and without heat and homogenization will be used to modify cheesemilk for the manufacture of low sodium cheese in which different NaCl-KCl treatments will be applied to the curds before molding (QF) or packaging (CC). Modified milk fat fractions will be created and incorporated into the cheesemilk using the combination of treatments above and used to make QF and CC. All cheeses will be evaluated for compositional, physical, microbiological, functional, rheological, microstructural, and sensorial properties and profiles generated for lipid, proteins, and volatile compounds at intervals throughout aging. The effects of NTP on the release of bioactive peptides, such as casein phosphopeptides and peptides with antihypertensive or antimicrobial activities, from the proteins within the cheese matrix will be evaluated.