Skip to main content
ARS Home » Southeast Area » New Orleans, Louisiana » Southern Regional Research Center » Food and Feed Safety Research » People & Locations » Matthew Lebar

Matthew Lebar
Food and Feed Safety Research
Chemist

Phone: (504) 286-4321
Fax:

1100 ROBERT E. LEE BLVD
NEW ORLEANS, LA 70179
Projects
Genetic and Environmental Factors Controlling Aflatoxin Biosynthesis
In-House Appropriated (D)
  Accession Number: 430859
Molecular and Environmental Factors Controlling Aflatoxin Reduction by Non-Toxigenic Aspergillus Strains
In-House Appropriated (D)
  Accession Number: 430863
Metabolic Profiling of the Aspergillus flavus-Maize Interaction to Identify Fungal Pathogenicity and Host Plant Resistance Factors
Non-Funded Cooperative Agreement (N)
  Accession Number: 435603
Probing Chromosome Structure to Activate Silent Metabolite Gene Clusters
Non-Assistance Cooperative Agreement (S)
  Accession Number: 438371

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review ()
Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Luis, J.M., Carbone, I., Payne, G.A., Bhatnagar, D., Cary, J.W., Moore, G.G., Lebar, M.D., Wei, Q., Mack, B., Ojiambo, P.S. 2020. Characterization of morphological changes within stromata during sexual reproduction in Aspergillus flavus. Mycologia. https://doi.org/10.1080/00275514.2020.1800361.
Biosynthesis of conidial and sclerotial pigments in Aspergillus species Reprint Icon ()
Chang, P.-K., Cary, J.W., Lebar, M.D. 2020. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-020-10347-y.
rmtA-dependent transcriptome and its role in secondary metabolism, environmental stress, and virulence in Aspergillus flavus Reprint Icon - (Peer Reviewed Journal)
Satterlee, T., Entwistle, S., Yin, Y., Cary, J.W., Lebar, M.D., Losada, L., Calvo, A.M. 2019. rmtA-dependent transcriptome and its role in secondary metabolism, environmental stress, and virulence in Aspergillus flavus. G3, Genes/Genomes/Genetics. 9(12):4087-4096. https://doi.org/10.1534/g3.119.400777.
The secondary metabolism of Aspergillus flavus: small molecules with diverse biological function - (Abstract Only)
Contribution of maize polyamine and amino acid metabolism toward resistance against Aspergillus flavus infection and aflatoxin production Reprint Icon - (Peer Reviewed Journal)
Majumdar, R., Minocha, R., Lebar, M.D., Rajasekaran, K., Long, S., Carter-Wientjes, C.H., Minocha, S., Cary, J.W. 2019. Contribution of maize polyamine and amino acid metabolism toward resistance against Aspergillus flavus infection and aflatoxin production. Frontiers in Plant Science. 10:692. https://doi.org/10.3389/fpls.2019.00692.
Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment Reprint Icon - (Peer Reviewed Journal)
Chang, P.-K., Scharfenstein, L.L., Mack, B.M., Wei, Q., Gilbert, M.K., Lebar, M.D., Cary, J.W. 2019. Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment. Applied Microbiology and Biotechnology. 103:4889-4897. https://doi.org/10.1007/s00253-019-09820-0.
Targeting polyamine metabolism for control of fungal pathogenesis and increasing host resistance during the maize-Aspergillus flavus interaction - (Abstract Only)
The aspergillic acid biosynthetic gene cluster predicts neoaspergillic acid production in Aspergillus section Circumdati Reprint Icon - (Peer Reviewed Journal)
Lebar, M.D., Mack, B.M., Carter-Wientjes, C.H., Gilbert, M.K. 2019. The aspergillic acid biosynthetic gene cluster predicts neoaspergillic acid production in Aspergillus section Circumdati. World Mycotoxin Journal. 12(3):213-222. https://doi.org/10.3920/WMJ2018.2397.
Aspergillus flavus secondary metabolites and their roles in fungal development, survival and virulence - (Abstract Only)
Host-induced silencing of Aspergillus flavus genes to control preharvest aflatoxin contamination in maize - (Abstract Only)
The role of extrolites secreted by nonaflatoxigenic Aspergillus flavus in biocontrol efficacy Reprint Icon - (Peer Reviewed Journal)
Moore, G.G., Lebar, M.D., Carter-Wientjes, C.H. 2018. The role of extrolites secreted by nonaflatoxigenic Aspergillus flavus in biocontrol efficacy. Journal of Applied Microbiology. 126:1257-1264. https://doi.org/10.1111/jam.14175.
Contribution of maize polyamine and amino acid metabolism towards resistance against Aspergillus flavus infection and aflatoxin production - (Abstract Only)
Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70 Reprint Icon - (Peer Reviewed Journal)
Gilbert, M.K., Mack, B.M., Moore, G.G., Downey, D.L., Lebar, M.D., Joarder, V., Losada, L., Yu, J., Nierman, W.C., Bhatnagar, D. 2018. Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70. PLoS One. 13(7):e0199169. https://doi.org/10.1371/journal.pone.0199169.
Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus - (Peer Reviewed Journal)
Lebar, M.D., Cary, J.W., Majumdar, R., Carter-Wientjes, C.H., Mack, B.M., Wei, Q., Uka, V., De Saeger, S., Diana Di Mavungu, J. 2018. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genetics and Biology. 116:14-23.
Aspergillus flavus secondary metabolites: more than just aflatoxins Reprint Icon ()
Cary, J.W., Gilbert, M.K., Lebar, M.D., Majumdar, R., Calvo, A.M. 2018. Aspergillus flavus secondary metabolites: more than just aflatoxins. Food Safety. 6(1):7-32. https://doi.org/10.14252/foodsafetyfscj.2017024.
RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels Reprint Icon - (Peer Reviewed Journal)
Gilbert, M.K., Majumdar, R., Rajasekaran, K., Chen, Z.-Y., Wei, Q., Sickler, C.M., Lebar, M.D., Cary, J.W., Frame, B.R., Wang, K. 2018. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta. 247:1465–1473. https://doi.org/10.1007/s00425-018-2875-0.
The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels - (Peer Reviewed Journal)
Majumdar, R., Lebar, M.D., Mack, B.M., Minocha, R., Minocha, S., Carter-Wientjes, C.H., Sickler, C.M., Rajasekaran, K., Cary, J.W. 2018. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels. Frontiers in Plant Science. 9:317. https://doi.org/10.3389/fpls.2018.00317.
Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels Reprint Icon - (Peer Reviewed Journal)
Gilbert, M.K., Medina, A., Mack, B.M., Lebar, M.D., Rodriguez, A., Bhatnagar, D., Magan, N., Obrian, G., Payne, G. 2018. Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels. Toxins. 10(1):5. https://doi.org/10.3390/toxins10010005.
The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production Reprint Icon - (Peer Reviewed Journal)
Cary, J.W., Harris-Coward, P.Y., Scharfenstein, L.L., Mack, B.M., Chang, P.-K., Wei, Q., Lebar, M.D., Carter-Wientjes, C.H., Majumdar, R., Mitra, C., Banerjee, S., Chanda, A. 2017. The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins. 9(10):315. https://doi.org/10.3390/toxins9100315.
The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination Reprint Icon - (Peer Reviewed Journal)
Majumdar, R., Rajasekaran, K., Sickler, C.M., Lebar, M.D., Musungu, B.M., Fakhoury, A.M., Payne, G.A., Geisler, M., Carter-Wientjes, C.H., Wei, Q., Bhatnagar, D., Cary, J.W. 2017. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination. Frontiers in Plant Science. 8:1758. https://doi.org/10.3389/fpls.2017.01758.
Effect of water activity, temperature, and carbon dioxide on the Aspergillus flavus transcriptome and aflatoxin B1 production ()
Gilbert, M.K., Medina-Vaya, A., Mack, B.M., Lebar, M.D., Rodriguez, A., Bhatnagar, D., Magan, N., Obrian, G., Payne, G. 2017. Effect of water activity, temperature, and carbon dioxide on the Aspergillus flavus transcriptome and aflatoxin B1 production. National Center for Biotechnology Information (NCBI). Accession: PRJNA380582.