Skip to main content
ARS Home » Midwest Area » Columbia, Missouri » Plant Genetics Research » Research » Publications at this Location » Publication #354949

Research Project: Soybean Seed Quality Improvement through Translational Genomics

Location: Plant Genetics Research

Title: Epigenetics regulates reproductive development in plants

Author
item HAN, QIANG - St Louis University
item BARTELS, ARTHUR - St Louis University
item CHENG, XI - St Louis University
item MEYER, ANGELA - St Louis University
item An, Yong-Qiang - Charles
item HSIEH, TZUNG-FU - St Louis University
item XIAO, WENYAN - St Louis University

Submitted to: Plants
Publication Type: Review Article
Publication Acceptance Date: 11/27/2019
Publication Date: 12/2/2019
Citation: Han, Q., Bartels, A., Cheng, X., Meyer, A., An, Y., Hsieh, T., Xiao, W. 2019. Epigenetics regulates reproductive development in plants. Plants. 8(12):564. https://doi.org/10.3390/plants8120564.
DOI: https://doi.org/10.3390/plants8120564

Interpretive Summary:

Technical Abstract: Seed, resulting from reproductive development, is the main nutrient source for human beings, and reproduction has been intensively studied through genetic, molecular, and epigenetic approaches. However, how different epigenetic pathways crosstalk and integrate to regulate seed development remains unknown. Here, we review the recent progress of epigenetic changes that affect chromatin structure, such as DNA methylation, polycomb group proteins, histone modifications, and small RNA pathways in regulating plant reproduction. In gametogenesis of flowering plants, epigenetics is dynamic between the companion cell and gametes. Cytosine DNA methylation occurs in CG, CHG, CHH contexts (H = A, C, or T) of genes and transposable elements, and undergoes dynamic changes during reproduction. Cytosine methylation in the CHH context increases significantly during embryogenesis, reaches the highest levels in mature embryos, and decreases as the seed germinates. Polycomb group proteins are important transcriptional regulators during seed development. Histone modifications and small RNA pathways add another layer of complexity in regulating seed development. In summary, multiple epigenetic pathways are pivotal in regulating seed development. It remains to be elucidated how these epigenetic pathways interplay to affect dynamic chromatin structure and control reproduction.