Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: LANDSCAPE-BASED CROP MANAGEMENT FOR FOOD, FEED, AND BIOENERGY

Location: Cropping Systems and Water Quality Research

Title: Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials)

Author
item Tremblay, Nicolas
item Bouroubi, Mohamed
item Belec, Carl
item Mullen, Robert
item Kitchen, Newell
item Thomason, Wade
item Ebelhar, Steve
item Mengel, Dave
item Raun, William
item Francis, Dennis
item Vories, Earl - Earl
item Ortiz-monasterio, Ivan

Submitted to: Asian Conference on Precision Agriculture
Publication Type: Abstract Only
Publication Acceptance Date: 3/31/2013
Publication Date: 6/25/2013
Citation: Tremblay, N., Bouroubi, M.Y., Belec, C., Mullen, R.L., Kitchen, N.R., Thomason, W.E., Ebelhar, S.A., Mengel, D.B., Raun, W.R., Francis, D.D., Vories, E.D., Ortiz-Monasterio, I. 2013. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials [Abstract]. Asian Conference on Precision Agriculture. 52-53.

Interpretive Summary:

Technical Abstract: Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series of experiments to explain the sources of heterogeneity. In this study this technique was used to examine the influence of soil and weather parameters on N responses of corn (Zea mays L.) across 51 studies involving the same N rate treatments which were carried out in a diversity of North American locations between 2006 and 2009. Results showed that corn response to added N was significantly greater in fine-textured soils than in coarse-textured soils. A new metric called “abundant and well-distributed rainfall” and, to a lesser extent, accumulated corn heat units enhanced N response. At high N rates corn yields increased by a factor of 1.6 (over the unfertilized control) in coarse-textured soils and 2.7 in fine-textured soils. Subgroup analyses were performed on the fine-textured soil class based on weather parameters. Rainfall patterns had an important effect on N response in this soil texture class, with yields being increased 4.5-fold by in-season N fertilization under conditions of abundant and well-distributed rainfall. These findings could be useful for developing N fertilization algorithms that would allow for N application at optimal rates taking into account rainfall pattern and soil texture, which would lead to improved crop profitability and reduced environmental impacts.

Last Modified: 8/24/2016
Footer Content Back to Top of Page