Skip to main content
ARS Home » Southeast Area » Oxford, Mississippi » National Sedimentation Laboratory » Watershed Physical Processes Research » Research » Publications at this Location » Publication #274440

Title: An empirical investigation of gully widening rates in upland concentrated flows

item Wells, Robert - Rob
item Momm, Henrique
item Rigby Jr, James
item BENNETT, SEAN - University Of Buffalo
item Bingner, Ronald - Ron
item Dabney, Seth

Submitted to: Catena
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 10/3/2012
Publication Date: 1/1/2013
Citation: Wells, R.R., Momm, H.G., Rigby Jr, J.R., Bennett, S.J., Bingner, R.L., Dabney, S.M. 2013. An empirical investigation of gully widening rates in upland concentrated flows. Catena. 101:114-121.

Interpretive Summary: Soil erosion is a destructive function of nature. Currently, our understanding of the mechanisms that drive channel bank expansion is limited. This study reports on experiments conducted in a laboratory flume to examine channel widening under controlled flow rates and bed slopes. We learned that channel widening is related to stream power. Relations were developed to predict channel widening for use in field and watershed erosion models seeking to predict ephemeral gully evolution.

Technical Abstract: Soil erosion, in its myriad forms, devastates arable land and infrastructure. As an integral landscape erosion feature, gully erosion is a complicated system as its evolution is controlled by upward migration of a gully head (headcut face), incision of the gully bed (plunge pool) and gravitational mass-movement (widening) on gully channel sidewalls. Bed incision is often limited by the presence of a non-erodible or impervious soil layer. When erosion reaches such a layer, the gully typically widens, creating a wide shallow cross section. Once a gully is initiated, transport and deposition of the eroded soil and widening of the gully channel, further govern its evolution. Our knowledge of these processes in shallow concentrated flows within agricultural soils, however, is still quite limited and largely scaled down from river hydraulics. Experiments were conducted to examine channel expansion due to channel slope and overland flow discharge. Packed soil beds were subjected to simulated rainstorms, followed by clear-water overland flow. As slope and discharge increase, channel widening processes accelerate. An empirical equation is developed based upon the measured channel width time series from constant discharge experiments and successfully applied to variable discharge experiments.