Skip to main content
ARS Home » Southeast Area » Oxford, Mississippi » National Sedimentation Laboratory » Watershed Physical Processes Research » Research » Publications at this Location » Publication #115793

Title: PORE-WATER PRESSURE EFFECTS ON THE DETACHMENT AND ENTRAINMENT OF COHESIVE STREAMBEDS: SEEPAGE FORCES AND MATRIC SUCTION

Author
item Simon, Andrew
item COLLISON, ANDREW - UNIVERSITY OF MISSISSIPPI

Submitted to: Earth Surface Processes and Landforms
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 12/8/2000
Publication Date: N/A
Citation: N/A

Interpretive Summary: Erosion of fine-grained (cohesive; silts and clays) streambeds and streambanks is a complex issue because of the electro-chemical bonds that hold the particles together. Predicting erosion of these materials has generally been attempted using techniques that are based on the size and weight of the particles compared to the forces exerted by flowing water. This study combines field and laboratory experiments with numerical simulations to show that erosion of the materials can occur by other forces and mechanisms. Over the course of stormflow, forces exerted downward on the streambed by the water on top of the bed relative to forces within the bed itself result in a net upward-directed force which is capable of eroding blocks or chips of cohesive material. The paper describes these forces and the conditions under which these processes are likely to occur.

Technical Abstract: Upward-directed seepage forces within cohesive streambeds provide a mechanism of detachment of aggregates. In contrast, suction caused by negative pore-water pressures is found to increase the shear strength of unsaturated cohesive bed and bank materials. Measurements of pore-water pressures below cohesive streambeds in the midwestern United States disclosed matric suction values as great as 15-20 kPa in eastern Neb. And 40-50 kPa in northern Miss. By accounting for resisting forces such as particle weight, cohesion and matric suction, and driving forces such as fluid drag and upward-directed seepage forces during the recessional limb of stormflow hydrographs, a numerical scheme for evaluating the potential for erosion of cohesive aggregates is obtained. A hypothesis for detachment and erosion of chips or blocks of cohesive bed material is proposed: (1) large (5 m), rapid rises in stage increase pore pressures and decrease matric suction dramatically in the region just below the bed surface; (2) a relatively rapid decrease in stage causing a loss of downward water pressure combined with low-rates of pore-pressure dissipation result in steepened hydraulic gradients just below the bed surface; and (3) a resulting net upward seepage force is great enough to contribute to detachment and entrainment of cohesive bed material.