Skip to main content
ARS Home » Pacific West Area » Hilo, Hawaii » Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center » Tropical Crop and Commodity Protection Research » Research » Research Project #429868

Research Project: Detection, Control and Area-wide Management of Fruit Flies and Other Quarantine Pests of Tropical/Subtropical Crops

Location: Tropical Crop and Commodity Protection Research

Project Number: 2040-22430-026-000-D
Project Type: In-House Appropriated

Start Date: Oct 15, 2015
End Date: Oct 14, 2020

The goals of our project plan are to conduct foundational research to create the knowledge base necessary to develop innovative control methods and IPM strategies, and to conduct applied research to produce information and products that improve pest control in tropical agriculture. The four major objectives of our program are: Objective 1: Model pest invasion pathways, and investigate the genomics/genetics, physiology/behavior, population dynamics, biology/ecology, and natural enemies of tropical and subtropical fruit flies and other invasive pests to develop technologies to control (contain, suppress, and eradicate) these pests in Hawaii and the Pacific, the U.S. mainland, and elsewhere. 1A: Build an analysis of emerging tephritid fruit fly genomes, including linkage mapping, uniform and consistent gene structural and functional annotation, and comparative genomic analysis. 1B: Conduct surveys on coffee berry borer (CBB) distribution and abundance on Hawaii Island to provide a baseline for a predictive model that integrates GIS, pest insect population dynamics, host plant phenology, weather data and grower practices to drive area-wide management of CBB on Hawaii Island. Objective 2: Determine physiological, genetic, and biological factors limiting the effectiveness of the sterile insect technique (SIT) and natural enemies in control and eradication of fruit flies and other tropical plant pests of quarantine significance. 2A: Improve the effectiveness of mass reared fruit flies for SIT by quantifying the impact of colony infusion on incorporating wild genetics into the SIT colony, and correlating fly performance with genomic markers. 2B: Investigate parasitoid-fruit fly host interactions from the molecular to the field level. Objective 3: To increase export of tropical fruits and vegetables, improve attractants and trapping systems for surveillance and detection, and develop lures, baits, and reduced risk pesticides for area-wide IPM of fruit flies and/or other tropical plant pests of quarantine significance. 3A: Evaluation of C. capitata, B.dorsalis and B. cucurbitae captures in traps baited with solid trimedlure (TML), methyl eugenol (ME) and raspberry ketone (RK) male lure and insecticide dispensers weathered in Hawaii and California. 3B: Evaluation of mixtures, weathering and chemical degradation of SPLAT-spinosad ME and cue-lure (C-L) for fruit fly control under Hawaii and California conditions. 3C: Evaluation of a new attractant system for detection, monitoring and control of the sweetpotato vine borer, a pest of quarantine significance in Hawaii. Objective 4: Provide baseline information for development of low prevalence and/or pest-free zones, for implementation in Hawaii and the U.S. mainland, to promote or allow unimpeded movement of fruit and vegetable exports. 4A: Create area of low pest prevalence (ALPP) as an independent measure of systems approaches for melon fly. 4B: Utilize models to evaluate the sensitivity of trapping grids for detection and control of insect pests such as tephritid fruit flies. 4C. Effectiveness of foliar and bait sprays against C. capitata, B.dorsalis, B. cucurbitae and B. latifrons.

Hypothesis 1A: Tephritid genomes have a core set of genes that are related to their proliferation as pests world-wide. If we have trouble generating crosses from a particular species or have issues generating genomic DNA, other species could be sequenced. Approach 1B: Collect baseline data on distribution and abundance of Coffee Berry Borer and associated environmental and climatic data. Then use GIS techniques to produce a region-wide assessment of infestation and economic impact. If this does not work, surveys can be replaced with grower-collected data. Approach 2A: Combine genetic, proteomic and phenotypic data into a synthetic analysis. If portions experiments fail or cannot be integrated, publish portions independently. Approach 2B: Examine tephritid host-parasitoid biology across levels of biological organization to allow integration of foundational knowledge benefiting classical biological control of tephritids. If international releases are impeded by regulatory issues, field work in Hawaii will be done. Hypothesis 3A: Solid male lure wafers with solid insecticidal tape are just as effective, but more convenient and safer to handle than current liquid lure-insecticide formulations used for fruit fly detection programs. If data are inconclusive, chemical analyses of weathered dispensers from trials will at least provide “use pattern” and formulation data for future trials. Hypothesis 3B: Generic combination SPLAT-MAT-spinosad-methyl eugenol/cue-lure mixture will perform as well as Min-U-Gel with naled and ME and C-L separately for fruit fly control/eradication. If the sprayable mixtures are too expensive, recommend addition of small amounts of cue-lure or raspberry ketone to STATIC-spinosad-ME as part of a tank mix. Hypothesis 3C: A binary male attractant system identified with sweetpotato vine borer populations in Vietnam will provide significantly greater male catch in Hawaii populations than male catch in traps baited with an initially identified single compound lure. In cases where low populations are encountered, trials will be shifted to other fields or other time of year where higher populations are present. Hypothesis 4A: Mass trapping using a plant-odor lure, male lure and protein baits can create areas of low pest prevalence (ALPP) in commercial crops and reduce the risk of a mating pair in a consignment when combined with a second measure such as a (less than 99.9986% effective) quarantine treatment. Alternatively, investigate the effects of other independent measures such as poor host status and quarantine treatments. Approach 4B: Develop a biologically-based mathematical model of tephritid traps in a landscape that allows formal quantification of trap network sensitivity. Hypothesis 4C: Current preharvest foliar insecticides being used in IPM systems against other fruit and vegetable pests (e.g., spotted wing drosophila and Asian citrus psyllid) in California and Florida are sufficient to meet quarantine requirements for fruit flies when introduced into Florida and California. Alternatives are to use current practices of either malathion protein bait or GF-120 sprays.