Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Bio-oils Research » Research » Research Project #429181

Research Project: Value-added Bio-oil Products and Processes

Location: Bio-oils Research

Project Number: 5010-41000-175-000-D
Project Type: In-House Appropriated

Start Date: Aug 4, 2015
End Date: Aug 3, 2020

Objective:
Objective 1: Enable, from a technological standpoint, new commercial separation processes for the production of marketable low-cost high-purity fatty acids. Objective 2: Enable new commercial products derived from fatty acid esters. Objective 3: Enable new commercial biobased additives for applications in lubricants. • Sub-objective 3.A. Develop novel and cost-competitive structures of biobased additives and base oils. • Sub-objective 3.B. Investigate tribological property of novel biobased additives and base oils and use results to optimize the respective chemical structures. This project is aimed at developing enabling new commercial technologies, processes, and biobased products for various markets including for: remediation (specifically heavy metal remediation to include water treatment/purification); lubricant additives; lubricant base oils; and chemical additives. The technologies and products from this research will be competitive in cost and performance to those currently in the respective markets. The biobased products targeted in this project will result in significant improvements to the U.S. economy and the environment as well as to the safety and health of the American people.

Approach:
(1) This approach outlines work to be performed related to a) screening of feedstock oil properties and quality; b) design of the membrane-based process Step 1 to remove polyunsaturated fatty acids and enrich saturated fatty acids/ monounsaturated fatty acid (MUFA) concentrations in fatty acid or fatty acid methyl ester (FAME) mixtures; c) evaluate two techniques for the design of process Step 2 to efficiently separate and enrich individual MUFA (oleic and erucic acids) with high yield and purity; and d) integrate designs for Steps 1 and 2 into a single process to fractionate fatty acid mixtures to produce valuable MUFA with high yield and purity. These items present a series of decision points that will be addressed during the course of the research project. (2)Recent research within the unit has shown thioalkyl derivatives of vegetable oils can be used in heavy metal remediation applications with the thioalkyl derivatives acting as metal-coordinating agents for silver ions. Building on these successful findings, new compounds featuring sulfur as the source of binding or chelation will be the primary objective. The initial feedstocks to be examined will be monounsaturated fatty compounds. This will be followed by the more chemically challenging di- and tri-unsaturated fatty compounds and, finally, vegetable oils. Emphasis will be placed on industrial oil feedstocks with enhanced sustainability. Additionally, materials from Objective 1, as they become available, will serve as unique, valuable starting materials. (3a) New biobased additives and base oils will be synthesized from commodity oils and their derivatives. Commodity vegetable oils comprise fatty acids with unsaturation that can be used as reactive sites for chemical modification. In addition to commodity vegetable oils, polymercaptanized soybean oil, which is produced in large quantities from abundant soybean oil and cheap hydrogen sulfide will be used. Other biobased feedstocks to be used in the synthesis include: FAME, obtained from the biodiesel process, especially those with unsaturation on their hydrocarbon chains; esters of fatty acid with various alcohol structures; etc. (3b) The new biobased additives will be first investigated for their compatibility with standard base oils. Additives found to be incompatible will be investigated using various approaches to make them more compatible. Only compatible additives will be allowed into the next phase which involves the investigation of their effectiveness at performing the specific tasks relevant to its application. Additives will be investigated relative to commercial reference additives using established tests for each application. Various concentrations of the additives in each base oil will be prepared and subjected to the respective tests. Based on these results, optimum concentrations of the additives will be determined.