Skip to main content
ARS Home » Southeast Area » New Orleans, Louisiana » Southern Regional Research Center » Food and Feed Safety Research » People & Locations » Christine Sickler

Christine Sickler
Food and Feed Safety Research
Biological Science Technician

Phone: (504) 286-4480
Fax:

1100 ROBERT E. LEE BLVD
BLDG 001 SRRC
NEW ORLEANS , LA 70179

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
Targeting polyamine metabolism for control of fungal pathogenesis and increasing host resistance during the maize-Aspergillus flavus interaction -
Host-induced silencing of Aspergillus flavus genes to control preharvest aflatoxin contamination in maize -
RNA-seq Analysis of Aspergillus flavus during infection of resistant and susceptible cultivars of maize reveals gene networks correlating with host resistance -
Inhibition of Aspergillus flavus growth and aflatoxin production in transgenic maize expresing the a-amylase inhibitor from Lablab purpureus L -
Rajasekaran, K., Sayler, R.J., Majumdar, R., Sickler, C.M., Cary, J.W. 2019. Inhibition of Aspergillus flavus growth and aflatoxin production in transgenic maize expresing the a-amylase inhibitor from Lablab purpureus L. Journal of Visualized Experiments. 144:e59169. https://doi.org/10.3791/59169.
RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels -
Gilbert, M.K., Majumdar, R., Rajasekaran, K., Chen, Z.-Y., Wei, Q., Sickler, C.M., Lebar, M.D., Cary, J.W., Frame, B.R., Wang, K. 2018. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta. 247:1465–1473. https://doi.org/10.1007/s00425-018-2875-0.
The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels -
Majumdar, R., Lebar, M.D., Mack, B.M., Minocha, R., Minocha, S., Carter-Wientjes, C.H., Sickler, C.M., Rajasekaran, K., Cary, J.W. 2018. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels. Frontiers in Plant Science. 9:317. https://doi.org/10.3389/fpls.2018.00317.
Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182 -
Rajasekaran, K., Sayler, R.J., Sickler, C.M., Majumdar, R., Jaynes, J.M., Cary, J.W. 2018. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Science. 270:150-156. https://doi.org/10.1016/j.plantsci.2018.02.006.
The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination -
Majumdar, R., Rajasekaran, K., Sickler, C.M., Lebar, M.D., Musungu, B.M., Fakhoury, A.M., Payne, G.A., Geisler, M., Carter-Wientjes, C.H., Wei, Q., Bhatnagar, D., Cary, J.W. 2017. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination. Frontiers in Plant Science. 8:1758. https://doi.org/10.3389/fpls.2017.01758.
Fidelity of a simple Liberty leaf-painting assay to validate transgenic maize plants expressing the selectable marker gene, bar -
Rajasekaran, K., Majumdar, R., Sickler, C., Wei, Q., Cary, J.W., Bhatnagar, D. 2017. Fidelity of a simple Liberty leaf-painting assay to validate transgenic maize plants expressing the selectable marker gene, bar. Journal of Crop Improvement. 31(4):628-636. https://doi.org/10.1080/15427528.2017.1327913.
RNA interference-mediated control of Aspergillus flavus in maize -
Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain Reprint Icon -
Rajasekaran, K., Sickler, C.M., Brown, R.L., Cary, J.W., Bhatnagar, D. 2013. Evaluation of resistance to aflatoxin contamination in kernels of maize genotypes using a GFP-expressing Aspergillus flavus strain. World Mycotoxin Journal. 6(2):151-158.