Skip to main content
ARS Home » Northeast Area » Ithaca, New York » Robert W. Holley Center for Agriculture & Health » Emerging Pests and Pathogens Research » People & Locations » Bryan Swingle

Bryan M Swingle
Emerging Pests and Pathogens Research
Research Molecular Biologist

Phone: (607) 255-7894
Fax: (607) 255-4471
Room 302

USDA-ARS, ROBERT W. HOLLEY CENTER
TOWER RD.
ITHACA , NY 148532901
Projects
Unraveling the Phytopathogen's Response to its Environment
Cooperative Agreement (A)
  Accession Number: 429835
Genomic and Functional Analysis of Emerging and Persistent Plant Pathogenic Bacteria to Support Disease Control
Cooperative Agreement (A)
  Accession Number: 433486
Characterization of Molecular Networks in Diseases Caused by Emerging and Persistent Bacterial Plant Pathogens
In-House Appropriated (D)
  Accession Number: 432528
Integrating Next-generation Technologies for Blackleg and Soft Rot Management in Potato
Reimbursable Cooperative Agreement (R)
  Accession Number: 433967
Identifying Novel Potato Germplasm with Resistance Against Cyst Nematode and Dickeya Pathogens
Non-Assistance Cooperative Agreement (S)
  Accession Number: 433687

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
An AlgU-regulated antisense transcript encoded within the Pseudomonas syringae fleQ gene has a positive effect on motility -
The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response Reprint Icon -
Butcher, B., Bao, Z., Wilson, J., Stodghill, P., Swingle, B.M., Filiatrault, M.J., Schneider, D.J., Cartinhour, S.W. 2017. The ECF sigma factor, PSPTO_1043, in Pseudomonas syringae pv. tomato DC3000 is induced by oxidative stress and regulates genes involved in oxidative stress response. PLoS One. DOI: 10.1371/journal.pone.0180340.
Testing for Blackleg and Dickeya in the 2017 field season -
Swingle, B.M., Perry, K. 2017. Testing for Blackleg and Dickeya in the 2017 field season. Empire State Potato Growers (Newsletter). Available: http://empirepotatogrowers.com/testing-for-blackleg-and-dickeya-in-the-2017-field-season/.
Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity -
Clarke, C.R., Hayes, B.W., Runde, B.J., Markel, E.J., Webb, B.A., Scharf, B.E., Swingle, B.M., Vinatzer, B.A. 2016. Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity. PeerJ. 4:e2570.
Population genomic insights into the emergence, crop-adaptation and dissemination of Pseudomonas syringae pathogens -
Swingle, B.M., Monteil, C.L., Yahara, K., Studholme, D.J., Mageiros, L., Meric, G., Morris, C.E., Vinatzer, B.A., Sheppard, S.K. 2016. Population genomic insights into the emergence, crop-adaptation and dissemination of Pseudomonas syringae pathogens. PLoS Pathogens. 2(10):e000089.
AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000 -
Markel, E.J., Stodghill, P., Bao, Z., Myers, C., Swingle, B.M. 2016. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000. Journal of Bacteriology. 198(17):2330-2344.
Pseudomonas syringae pv. Tomato DC3000 Type III secretion effector polymutants reveal an interplay between hopAD1 and AvrPtoB -
Wei, H., Chakravarthy, S., Mathieu, J., Helmann, T.C., Stodghill, P., Swingle, B.M., Martin, G.B., Collmer, A. 2015. Pseudomonas syringae pv. Tomato DC3000 Type III secretion effector polymutants reveal an interplay between hopAD1 AvrPtoB. Cell Host and Microbe. 17(6):752-62.
Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions -
Lam, H.N., Chakravarthy, S., Wei, H., Buinguyen, H., Stodghill, P., Swingle, B.M., Collmer, A., Cartinhour, S.W. 2014. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions. PLoS Pathogens. 9(8):e106115. DOI: 10.1371/journal.pone.0106115.
Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000 -
Swingle, B.M., Bao, Z., Stodghill, P., Myers, C.R., Lam, H., Markel, E.J., Collmer, A., Cartinhour, S.W., Schweitzer, P. 2014. Genomic plasticity enables phenotypic variation of Pseudomonas syringae pv. tomato DC3000. PLoS One. 9(2):e86628. DOI: 10.1371/Journal.pone.0086628.
RecTEPsy mediated recombineering in Pseudomonas syringae -
Swingle, B.M. 2014. RecTEPsy mediated recombineering in Pseudomonas syringae. Methods in Molecular Biology. 1114:3-10. DOI: 10.1007/978-1-62703-761-7_1.
Oligonucleotide recombination enabled site-specific mutagenesis in bacteria -
Swingle, B.M. 2013. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria. Methods in Molecular Biology. 978:127-132.
Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723), a DUF1330 family member, is needed to produce L-allo-isoleucine, a precursor for the phytotoxin coronatine -
Worley, J.N., Russell, A.B., Wexler, A.G., Bronstein, P., Kvitko, B.H., Krasnoff, S., Munkvold, K.R., Swingle, B.M., Gibson, D.M., Collmer, A. 2013. Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723), a DUF1330 family member, is needed to produce L-allo-isoleucine, a precursor for the phytotoxin coronatine. Journal of Bacteriology. 195(2):287-296.
Regulons of the Pseudomonas syringae pv. tomato DC3000 iron starvation sigma factors PSPTO_0444, PSPTO_1209 and PSPTO_1286 -
Swingle, B.M., Markel, E.J., Butcher, B.G., Myers, C.R., Stodghill, P., Cartinhour, S.W. 2013. Regulons of the Pseudomonas syringae pv. tomato DC3000 iron starvation sigma factors PSPTO_0444, PSPTO_1209 and PSPTO_1286. Applied and Environmental Microbiology. 79(2):725-727.
Substrate and target sequence lengths influence RecTEPsy recombineering efficiency in Pseudomonas syringae -
Swingle, B.M., Bao, Z., Cartinhour, S.W. 2012. Substrate and target sequence lengths influence RecTEPsy recombineering efficiency in Pseudomonas syringae. PLoS One. 7(11):e50617. DOI: 10.1371/journal.pone.0050617.
An ECF sigma factor mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores -
Swingle, B.M., Markel, E.J., Maciak, C.L., Butcher, B., Myers, C., Stodghill, P., Cartinhour, S.W., Bao, Z. 2011. An ECF sigma factor mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores. Journal of Bacteriology. 193:5775-5783.
New strategies for genetic engineering Pseudomonas syringae using recombination -
Swingle, B.M. 2011. New strategies for genetic engineering Pseudomonas syringae using recombination. Molecular Genetics of Bacteria and Phage. p. 20.
Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000 -
Butcher, B.G., Bronstein, P., Myers, C., Stodghill, P., Bolton, J.J., Markel, E.J., Filiatrault, M.J., Swingle, B.M., Gaballa, A., Helmann, J.D., Schneider, D.J., Cartinhour, S.W. 2011. Characterization of the Fur regulon in Pseudomonas syringae pv. tomato DC3000. Journal of Bacteriology. 193(18):4598-4611. Available: http://www.ncbi.nlm.nih.gov/pubmed/21784947.
Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane -
Wu, S., Lu, D., Kabbage, M., Wei, H., Swingle, B.M., Dickman, M., He, P., Shan, L. 2011. Bacterial effector HopF2 interacts with AvrPto and suppresses Arabidopsis innate immunity at the plasma membrane. Molecular Plant-Microbe Interactions. 24(5):585-593.
Recombineering Pseudomonas syringae -
Swingle, B.M. 2010. Recombineering Pseudomonas syringae [abstract]. The 8th International Conference on Pseudomonas Syringae and Related Pathogens. 8/31.
Global survey of Fur binding refines the iron responsive regulon of Pseudomonas syringae -
Bronstein, P., Butcher, B.G., Myers, C.R., Stodghill, P., Swingle, B.M., Cartinhour, S.W. 2010. Global survey of Fur binding refines the iron responsive regulon of Pseudomonas syringae [abstract]. p. 31.
Functional analysis of PSPTO_1203 a FecI-like ECF Sigma Factor of Pseudomonas syringae pv. tomato DC3000 -
Swingle, B.M. 2010. Functional analysis of PSPTO_1203 a FecI-like ECF Sigma Factor of Pseudomonas syringae pv. tomato DC3000. Gordon Research Conference Proceedings. 99/12.
Recombineering using RecET from Pseudomonas syringae -
Swingle, B.M., Bao, Z., Markel, E.J., Cartinhour, S.W. 2010. Recombineering using RecET from Pseudomonas syringae. Molecular Genetics of Bacteria and Phage. 61/34.
Oligonucleotide recombination: a hidden treasure -
Swingle, B.M., Markel, E.J., Cartinhour, S.W. 2010. Oligonucleotide recombination: a hidden treasure. Bioengineered Bugs. 1(4):1-4.
A new shuttle vector for gene expression in biopolymer-producing Ralstonia eutropha -
Solaiman, D., Swingle, B.M., Ashby, R.D. 2010. A new shuttle vector for gene expression in biopolymer-producing Ralstonia eutropha. Journal of Microbiological Methods. 82:120-123.
Isolation of novel Pseudomonas syringae promoters and functional characterization in polyhydroxyalkanoate-producing pseudomads -
Solaiman, D., Swingle, B.M. 2010. Isolation of novel Pseudomonas syringae promoters and functional characterization in polyhydroxyalkanoate-producing pseudomads. New Biotechnology. 27(1):1-9.
Oligonucleotide recombination in gram negative bacteria -
Swingle, B.M., Markel, E.J., Costantino, N., Bubunenko, M., Cartinhour, S.W., Court, D. 2010. Oligonucleotide recombination in gram negative bacteria. Molecular Microbiology. 75(1):138-148.
Oligonucleotide recombination in bacteria -
Swingle, B.M., Costantino, N., Court, D., Bubunenko, M.G., Cartinhour, S.W. 2009. Oligonucleotide recombination in bacteria. [abstract}. 17:28.
Oligo Recombination in Gram Negative Bacteria -
Swingle, B.M., Cartinhour, S.W., Court, D. 2009. Oligo Recombination in Gram Negative Bacteria. Molecular Genetics of Bacteria and Phage. p. 166.
ECF Sigma Factor regulation in Pseudomonas syringae -
Swingle, B.M. 2008. Ecf sigma factor regulation in pseudomonas syringae. Molecular Genetics of Bacteria and Phage. p. 139.
Characterization of Promoter Motifs Regulated by ECF Sigma Factors of Pseudomonas syringae -
Swingle, B.M. 2008. Characterization of Promoter Motifs Regulated by ECF Sigma Factors of Pseudomonas syringae. Gordon Research Conference Proceedings. 4-2:p.14.
Characterization of the Promoter Motif Regulated by PSPTO_1209 a FecI-like ECF Sigma Factor of Pseudomonas syringae pv. tomato DC3000 -
Swingle, B.M., Schneider, D.J. 2008. Characterization of the Promoter Motif Regulated by PSPTO_1209 a FecI-like ECF Sigma Factor of Pseudomonas syringae pv. tomato DC3000. American Society for Microbiology. H-039:p.128.
Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads -
Swingle, B.M., Thete, D., Moll, M., Myers, C., Schneider, D.J., Cartinhour, S.W. 2008. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Molecular Microbiology. 68(4):871-889.
Extracytoplasmic Function (ECF) Sigma Factor Gene Regulation in Pseudomonas syringae: Integrated Molecular and Computational Characterization of PvdS-Regulated Promoters -
Swingle, B.M., Thete,, D., Moll, M., Myers,, C., Schneider, D.J., Cartinhour, S.W. 2007. Extracytoplasmic Function (ECF) Sigma Factor Gene Regulation in Pseudomonas syringae: Integrated Molecular and Computational Characterization of PvdS-Regulated Promoters. Molecular Genetics of Bacteria and Phage. p. 262.
Pyoverdine and beyond: PvdS dependent gene regulation in Pseudomonas syringae -
Swingle, B.M., Thete,, D., Moll, M., Myers,, C., Schneider, D.J., Cartinhour, S.W. Pyoverdine and beyond: PvdS dependent gene regulation in Pseudomonas syringae. American Society for Microbiology Conference. 159A:p. 90.