Location: Cereal Crops Research
Title: Host-induced gene silencing of the fungal gene FgGCN5 in barley for improving resistance to Fusarium head blightAuthor
ALHASHEL, ABDULLAH - North Dakota State University | |
DANGI, SANDESH - North Dakota State University | |
NAVASCA, ABBEAH - North Dakota State University | |
ZHONG, SHAOBIN - North Dakota State University | |
BALDWIN, THOMAS - North Dakota State University | |
Yang, Shengming |
Submitted to: Meeting Abstract
Publication Type: Abstract Only Publication Acceptance Date: 12/5/2023 Publication Date: 12/7/2023 Citation: Alhashel, A., Dangi, S., Navasca, A., Zhong, S., Baldwin, T., Yang, S. 2022. Host-induced gene silencing of the fungal gene FgGCN5 in barley for improving resistance to Fusarium head blight. Meeting abstract. 2022 National FHB Forum. Poster No. 93. Interpretive Summary: Technical Abstract: Fusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is one of the most devastating diseases in barley. However, effective resistance has not been identified in barley germplasm. To enhance barley resistance to FHB, we used host-induced gene silencing (HIGS) to target the F. graminearum histone acetyltransferase gene FgGCN5 in the present study. In the loss-of-function Fggcn5 mutant ('FgGCN5), acetylation levels of histone H3 were significantly decreased at several specific lysins, leading to a genome-wide differential expression and impaired metabolic processes affecting pathogenicity of F. graminearum. Using Agrobacterium-mediated gene transformation, we have generated transgenic plants and selected homozygous transformants in the late generations. Despite demonstrated production of small-interfering RNAs (siRNAs) homologous to FgGCN5 in the transgenic barley; the disease severity, DON accumulation, and fungal biomass showed no significant difference from wild-type. In line with these observations, quantitative revere transcription PCR (qRT-PCR) analysis showed the expression levels of FgSCN5 were not affected by the HIGS construct in the transgenic plants, indicating an inefficiency of the generated siRNAs on silencing the target gene. This research allows for more in-depth analysis for the use of HIGS against FHB. Follow-up investigations with more independent transgenic lines are ongoing to address the incompetence of HIGS targeting FgSCN5 to provide FHB resistance. |