Skip to main content
ARS Home » Plains Area » Sidney, Montana » Northern Plains Agricultural Research Laboratory » Agricultural Systems Research » Research » Publications at this Location » Publication #269787

Title: Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains

Author
item HANSEN, NEIL - Colorado State University
item Allen, Brett
item Baumhardt, Roland - Louis
item LYON, DREW - University Of Nebraska

Submitted to: Field Crops Research
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 2/22/2012
Publication Date: 6/14/2012
Citation: Hansen, N.C., Allen, B.L., Baumhardt, R.L., Lyon, D.J. 2012. Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains. Field Crops Research. 132:196-203.

Interpretive Summary: The Great Plains region of the United States is an area of widespread dryland crop production where precipitation ranges from 300 to 500 mm annually, with the majority of precipitation falling during hot summer months. The prevailing cropping system is a two-year rotation of wheat and summer fallow. The adoption of no-till practices has resulted in greater precipitation storage and use efficiency, which has led to greater cropping intensity, higher productivity, more diverse crop rotations, and improvements in soil properties. In Colorado, for example, a no-till rotation of winter wheat-maize-fallow increased total annualized grain yield by 75% compared to winter wheat – summer fallow. Soil erosion was reduced to just 25% of that from a conventional tillage wheat-summer fallow system. The primary challenge with reducing fallow frequency is the increase in yield variability and risk of crop failure. Improved approaches for choosing crop or fallow are being developed based on soil water content and forecasted weather. Development of alternative crops, crop rotations, and integrated livestock systems that are sustainable from both economic and ecological perspectives is an on-going effort. Other research is addressing adaptation of cropping practices to climate change and the potential for dryland biomass crop production for the developing biofuel industry.

Technical Abstract: The Great Plains region of the United States and Canada is an area of widespread dryland crop production, with wheat being the dominant crop. Precipitation in the region ranges from 300 to 500 mm annually, with the majority of precipitatioCPRLn falling during hot summer months. The prevailing cropping system is a two-year rotation of wheat and summer fallow. The adoption of no-till practices has resulted in greater precipitation storage and use efficiency, which has led to greater cropping intensity, higher productivity, more diverse crop rotations, and improvements in soil properties. In Colorado, for example, a no-till rotation of winter wheat-maize-fallow increased total annualized grain yield by 75% compared to winter wheat – summer fallow. Soil erosion was reduced to just 25% of that from a conventional tillage wheat-summer fallow system. The primary challenge with reducing fallow frequency is the increase in yield variability and risk of crop failure. Improved approaches for choosing crop or fallow are being developed based on soil water content and forecasted weather. Development of alternative crops, crop rotations, and integrated livestock systems that are sustainable from both economic and ecological perspectives is an on-going effort. Other research is addressing adaptation of cropping practices to climate change and the potential for dryland biomass crop production for the developing biofuel industry.