Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BHNRC) » Beltsville Human Nutrition Research Center » Diet, Genomics and Immunology Laboratory » Research » Research Project #436294

Research Project: Polyphenol-Rich Foods and Promotion of Intestinal Health

Location: Diet, Genomics and Immunology Laboratory

Project Number: 8040-51530-058-000-D
Project Type: In-House Appropriated

Start Date: Mar 16, 2019
End Date: Mar 15, 2024

Objective 1: Determine if polyphenol rich diets prevent microbiome dysbiosis, inappropriate activation of Toll and NOD-like receptor (TLR/NOD-like receptors) and reduce the severity of colitis in pigs. [NP107, C3, PS3B] Objective 2: Compare consumption of polyphenol-rich foods combined with probiotics early in life for amelioration of systemic inflammation induced by a westernized high fat diet. [NP107, C3, PS3B, C4, PS4A] Objective 3: Establish if consumption of polyphenol-rich foods will normalize westernized high fat diet-induced microbiome dysbiosis and prevent generalized inflammation. [NP107, C3, PS3B C4, PS4A]

The overall goal of the proposed research is to understand the complex interactions between diet, gut microbiome and host responses that are critical for the prevention of diseases associated with poor diet choices. The objective is to use a human-relevant pig model to understand mechanisms of intestinal dysregulation during consumption of a westernized-diet, which is strongly associated with obesity and related metabolic diseases, and to evaluate the incorporation of dietary probiotics, fruits and vegetables as an approach to attenuate the adverse consequences of consuming a westernized-diet. To achieve this goal, we propose to study the time-dependent changes in broad host health biomarkers within the immunome, microbiome and metabolome, and the dietary interventions that modulate these biomarkers. Our central hypothesis is that a modified westernized dietary pattern that contains recommended levels of fruits and vegetables will promote a healthier host microbiome due a polyphenol-induced prebiotic effect and anti-inflammatory responses.