Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Plant Polymer Research » Research » Research Project #438026

Research Project: New and Improved Co-Products from Specialty Crops

Location: Plant Polymer Research

Project Number: 5010-41000-180-000-D
Project Type: In-House Appropriated

Start Date: Apr 13, 2020
End Date: Apr 12, 2025

Objective 1: Increase the value of amylose inclusion complexes (AICs) produced from various carbohydrates and ligands for use as emulsifiers, film blends or surface treatments for paper products. Sub-Objective 1A: Develop effective emulsifiers based on AIC using high-amylose corn (HAC) or other polysaccharides, complexed with the salts of fatty acids or amines, using economical manufacturing techniques. Sub-Objective 1B: Produce higher value polymer blends or cellulosics using amylose inclusion complex materials made with lower-cost starches, such as normal corn food-grade starch (FGS) or corn flour, and fatty acids/amines or their salts. Objective 2: Resolve the underlying lab and pilot-scale extraction and biorefining techniques that generate protein-rich industrial feedstocks from plant crops, such as camelina or sorghum, define their functional properties, and enable industrial production and commercialization.

This project plans to increase the value of existing and new crops by developing higher value amylose and protein products. Recent research has shown that starch processed from corn can provide high-value amylose inclusion complexes with vegetable oil derivatives (ex. fatty acid or amine salts) in excellent yield and at low cost. To transfer this technology to industry, it is critical to determine the impact of the amount and source of amylose on the attributes of the resulting complex. Protein-rich crops such as camelina or sorghum, which are not produced in high quantities in the U.S., have the potential to provide additional higher revenue streams to U.S. farmers. While the U.S. is the world’s leader in sorghum production, the use of sorghum is currently generally relegated to feed uses. Given the similarities between sorghum and corn, it is expected that sorghum value can be increased by utilizing its component fractions, as has been done to corn. Camelina has shown value as a winter-grown oilseed crop, but new uses are needed for the components of the resulting seed press cakes. Improved extraction techniques are needed to increase the value of both crops. This research will: 1) enable new approaches to produce and use amylose complexes and establish their physicochemical properties, and 2) innovate and evaluate extraction techniques, as well as identify uses for proteinaceous materials from crops such as sorghum and camelina. Improved utilization of current and future crops will enhance the value of these crops in new and existing markets.