Skip to main content
ARS Home » Midwest Area » Ames, Iowa » National Laboratory for Agriculture and The Environment » Soil, Water & Air Resources Research » Research » Research Project #435648

Research Project: Managing Energy and Carbon Fluxes to Optimize Agroecosystem Productivity and Resilience

Location: Soil, Water & Air Resources Research

Project Number: 5030-11610-005-000-D
Project Type: In-House Appropriated

Start Date: Oct 9, 2018
End Date: Oct 8, 2023

Objective 1: Quantify the water and light use efficiency of corn-soybean and other cropping systems using a range of management practices (cover crops, tillage, N fertilizer, shelter) relative to carbon and water dynamics throughout the year. Objective 2: Evaluate the effectiveness of microclimates modified by agroforestry practices on production efficiency of row crop and silvopasture systems.

To fulfill the objectives of this project there are four major research projects: 1) comparison of energy and C exchanges between cover crop and reduced tillage corn-soybean systems compared to conventional systems, 2) comparison of the effect of increased air temperature and soil water availability on wheat growth and productivity, 3) evaluation of the effect of tree windbreaks on crop performance and energy exchanges compared to rainfed and irrigated cropping systems, and 4) comparison of the water and light use efficiency in pasture systems grown under silvopasture and conventional pasture. The research approach utilizes surface energy balance methods to quantify differences among management practices or microclimate modifications. These data are then used to estimate the water use and gross and net ecosystem productivity using daily values across the growing season with a direct contrast of cumulative water and carbon fluxes over a year and over portions of the year to represent different aspects of management systems. Studies on spring wheat will be conducted in the NLAE rhizotron to quantify the effect of increasing minimum air temperatures on phenological development, biomass, and grain yield components under a range of soil water conditions. The windbreak experiment involves a direct comparison of energy balance, biophysical properties, and productivity of rainfed and irrigated crops with rainfed crops protected by a windbreak at the Eastern Nebraska Research and Extension Center. A silvopasture research site in Fayetteville, Arkansas consists of rows of five tree species with orchardgrass in the alleys that is used for grazing and hay. Eddy covariance fluxes will be compared with Bowen ratio and surface renewal estimates in both agroforestry studies. Forage height, biomass, and leaf area index will be measured before each grazing event. Biomass produced and cumulative crop water use from the onset of growth or since the last grazing event will be used to calculate water use efficiency. These objectives focus on components of agricultural systems, provide a suite of observations on a common set of measurements to quantify carbon and energy exchanges, and lead to the direct comparison of water use efficiency and radiation use efficiency of these different systems. One critical aspect in this integration is the collaboration with crop modeling programs to evaluate how crop simulation models can be improved for these management alternatives.