Skip to main content
ARS Home » Southeast Area » Gainesville, Florida » Center for Medical, Agricultural and Veterinary Entomology » Insect Behavior and Biocontrol Research » Research » Research Project #429476

Research Project: Improved Biologically-Based Tactics to Manage Invasive Insect Pests and Weeds

Location: Insect Behavior and Biocontrol Research

Project Number: 6036-22000-031-00-D
Project Type: In-House Appropriated

Start Date: Dec 2, 2015
End Date: Dec 1, 2020

Objective:
Objective 1: Improve the feasibility of using multi-tactic pest control strategies, especially through the improvement of biologically based control methods, for invasive weeds of the southern United States (e.g. tropical soda apple, air potato and Chinese tallow). Sub-objective 1.A. Develop pre-release techniques that can be used to evaluate the impact of future biological control agents. Sub-objective 1.B. Determine the role of North American native natural enemies attacking biological control agents on the agents’ population establishment and impact to the targeted weed. Sub-objective 1.C. Determine release factors that increase successful establishment of weed biological control agents. Objective 2: Develop biologically based pest control strategies (e.g., augmentative biological control, mating disruption, and push-pull companion plants) for insect pests of the southern United States (e.g., whiteflies, corn silk flies, and the Argentine cactus moth). Sub-objective 2.A. Identify companion plants, commercial products and chemical compounds that i) repel whiteflies and determine their efficacy in limiting pest dispersal into crops (“push” factors), as well as ii) plants and products capable of attracting whiteflies into trap crops to facilitate control (“pull” factors). Sub-objective 2.B. Evaluate companion or refuge plants that attract or maintain important whitefly predators. Sub-objective 2.C. Develop an integrated cropping system combining “push-pull” crops or plant products with natural enemy refuges for sustainable biologically-based control of the whitefly. Sub-objective 2.D. Identify parasitoids with potential as biological control agents for corn silk flies. Sub-objective 2.E. Determine the Argentine field host range of the potential Argentine cactus moth biological control agent, Apanteles opuntiarum. Sub-objective 2.F. Determine the effectiveness of a mating disruption technology as a sustainable management option for the cactus moth in commercial cactus production areas. Sub-objective 2.G. Collect, identify, and distinguish between the complex of Harrisia cactus mealybugs (HCM), their plant hosts, and host specific parasitoids found in Argentina, Puerto Rico, other Caribbean Islands, and Florida.

Approach:
Invasive insect pests and weeds are among the most serious problems facing agricultural and natural ecosystems throughout the United States. This project plan describes research to improve implementation of biologically based tactics for non-pesticide management of insect pests and weeds. The goals will be achieved through acquiring a better understanding of the pest species biology along with the interactions between host plants and natural enemies to support the development of optimized approaches, technologies and strategies for control of a variety of targets. One area of research will address improvement of techniques to enhance release success and increased efficiency of establishment and impact of biological control insect species against invasive weed species, specifically targeting the air potato and Chinese tallow. A second area of research focuses on the development of an integrated vegetable cropping system for control of whiteflies using a “push/pull” pest management approach. A vegetable crop system will be assessed using ‘push’ components consisting of naturally repellent plants or plant compounds, in conjunction with ‘pull’ components that consist of trap crops and refuge plants that naturally harbor whitefly predators. The potential use of parasitoids for reduction of the impact of corn silk flies on sweet corn will also be examined. A third area of emphasis is on the protection of U.S. native cacti from the invasive Argentine cactus moth and the Harissia cactus mealybug complex. Control of the Argentine cactus moth will be assessed through the use of a mating disrupting pheromone along with a potential exotic parasitoid. Control of the Harissia cactus mealybug complex will be based on developing an understanding of the species complex composition, alternative host plant reservoirs and potential parasitoids. The outcomes of this research project will improve the sustainability of agricultural production, reduce reliance on pesticides and reduce the environmental degradation caused by invasive pest insect and weed species.