Skip to main content
ARS Home » Southeast Area » Oxford, Mississippi » Natural Products Utilization Research » Research » Research Project #429247

Research Project: Health-Promoting Bioactives and Biobased Pesticides from Medicinal and Herbal Crops

Location: Natural Products Utilization Research

Project Number: 6060-41000-013-000-D
Project Type: In-House Appropriated

Start Date: Jul 14, 2015
End Date: Jul 6, 2020

The main objective of this project is to isolate and identify compounds from natural sources with pesticidal activity or have properties that are beneficial for human health. The overall goal is to be able to provide compound(s) amenable for commercial development as a pesticide or identify a “high value” plant with unique bioactive compounds. Over the next 5 years, we will focus on the following objectives: Objective 1: Enable, from a technological standpoint, new commercial biopesticides; and identify optimum production practices for the plants from which these biopesticides are derived. Subobjective 1.1: Identify nematicidal compounds from tall fescue. Subobjective 1.2. Discover natural product based fungicides from plant extract collections or other useful sources for US agriculture. Subobjective 1.3: Investigation of cashew nut shell liquid for insecticide activity and synthetic modification of the isolated compounds to gain insights into structure-activity relationship. Sub-objective 1.4: Discover natural product based herbicidal and insecticidal compounds from crude plants and plant endophyte extract collections. Objective 2: Identify human bioactive compounds in select plants and herbs, and determine plant growth conditions to enhance or optimize bioactive compound concentrations. Subobjective 2.1: Identify anti-adipocyte compound(s) in Scutellaria ocmulgee and determine the effect of various growth conditions on the bioactive compound(s).

An “activity-guided” isolation approach will be employed in efforts to discover novel bioactive compounds. Focus will be on isolating single compounds from active fractions. The che mical structure of bioactive compounds isolated will be elucidated using a combination of spectroscopic techniques such as ultraviolet, infrared, mass spectrometry and nuclear magnetic resonance spectroscopy. Simple structure modification of the bioactive constituent(s) and synthesis of analogs will be performed for activity optimization. In general, four projects are included in the plan, employing specific approaches. These include: 1) Identification of nematotoxic compound(s) from tall fescue cultivar Jesup (Max-Q). Isolation will be guided by an in vitro assay on inhibition of nematodes. The activity of the isolated nematotoxic compound will be tested in soil. 2) Identification of fungicidal compound(s) from select plants from China. Isolation will be guided using in vitro assays against Botrytis cinerea, Colletotrichum species, Fusarium species, and Phomopsis species. The activity of isolated compounds will be tested in detached leaf assays. 3) Identification of compound(s) from cashew nut shell liquid with insecticidal activity. Isolation will be performed using assays to determine activity against mosquito (Aedis egypti) larvae and adult. Analogs of the mosquito larvicidal/adulticdal compound(s) will be synthesized following standard synthetic procedures such as Friedel-Crafts acylation reaction. 4) Identification of anti-obesity compound from Scutellaria ocmulgee. Isolation of compounds will be performed using inhibition of adipocyte differentiation as acidity indicator. Anti-adipocyte compounds isolated will be used as chemical markers in associated study determining the appropriate agronomic practices to generate highest amount of anti-adipocyte compound(s) and biomass.