Skip to main content
ARS Home » Southeast Area » New Orleans, Louisiana » Southern Regional Research Center » Commodity Utilization Research » Research » Research Project #428791

Research Project: Increasing the Value of Cottonseed

Location: Commodity Utilization Research

Project Number: 6054-41000-103-00-D
Project Type: In-House Appropriated

Start Date: Jun 2, 2015
End Date: Jun 1, 2020

Objective:
The overall goal of the project is to improve the postharvest utilization of cottonseed and thereby increase the value of the U.S. cotton crop through improved understanding of cottonseed composition, properties and processing of the seed’s components. There are five total objectives in the project. Three objectives focus on studying and modifying the oil, protein, and hull components of the seed. One objective is directed toward the study of processing operations to improve the separation of these components and the last objective is directed toward isolation of minor components that may exhibit beneficial bioactivity. Objective 1) Enable the development of new, commercial cotton varieties which express high levels of oleic acid in the seed. Sub-objective 1a) Study FAD2 structure in naturally high oleic acid cotton accessions. Sub-objective 1b) Use genes and other DNA regulatory elements associated with cyclopropyl fatty acid synthesis to silence production of these fatty acids in developing cottonseed. Sub-objective 1c) Determine the compositional and functional property differences between naturally high oleic acid and normal cottonseed oils. Objective 2) Enable new commercial process technologies that maximize the profitability of converting low-gossypol cotton seed into oil and meal products. Sub-objective 2a) Determine conditions that result in low-color oils from the processing of glandless cottonseed. Sub-objective 2b) Physically refine crude cottonseed oil from glandless cottonseed to produce commercial grade oil. Objective 3) Enable the commercial production of new products from the protein fraction of cottonseed meal. Sub-objective 3a) Improve water resistance of cottonseed protein meals, concentrates and isolates used as wood adhesives. Sub-objective 3b) Explore the use of cottonseed proteins as functional additives in non-food commercial products. Sub-objective 3c) Explore the use of cottonseed protein fractions to improve non-food product properties. Objective 4) Enable the commercial production of new bioactive food ingredients from glandless (no gossypol) cottonseed. Sub-objective 4a) Identify minor bioactive phenolic components from glandless cottonseed. Sub-objective 4b) Identify bioactive peptides and proteins from glandless cottonseed. Objective 5) Enable the commercial production of new products from the carbohydrate components in cottonseed burrs, hulls and kernels. Sub-objective 5a) Isolate, characterize, and study the functionality of hemicellulosic components from seed processing byproducts. Sub-objective 5b) Exploit the potential use of hull and other seed byproducts as fillers in composite materials.

Approach:
Several analytical, chemical, physical, microbiological, and genetic techniques will be employed to achieve the project goals. To alter cottonseed oil composition, a combination of genetic manipulation and classical breeding will be used. Various physical and chemical techniques will be employed at the laboratory level to mimic processing steps and to fractionate meal (i.e., protein) and hull components. Chemical, enzymatic, and physical techniques will be used to modify these isolated components and to characterize the resulting products. Performance of these fractions for different potential applications will be achieved through a series of physical testing methods. Isolation of seed minor components will be achieved for bioactivity studies through chemical fractionation and chromatographic methods and several cell-based assays will be used to test for activity.