Skip to main content
ARS Home » Plains Area » Fort Collins, Colorado » Center for Agricultural Resources Research » Water Management and Systems Research » Research » Research Project #432342

Research Project: Improving the Sustainability of Irrigated Farming Systems in Semi-Arid Regions

Location: Water Management and Systems Research

Project Number: 3012-13000-010-00-D
Project Type: In-House Appropriated

Start Date: Feb 5, 2017
End Date: Feb 4, 2022

Objective:
1. Improve water use efficiency (WUE) by identifying plant traits, mechanisms, and agronomic practices that increase productivity per unit of water used by the crop. 2. Develop simple and accurate methods to quantify evapotranspiration (ET) in agricultural systems under limited water availability to improve the efficiency of irrigation scheduling. 3. Create Water Production Functions (WPF, yield per ET) for alternative crops under limited water availability.

Approach:
Increased productivity of cropping systems as well as yield stability is vital to meet the challenge of expanding human populations and increased needs for food and fiber. Effective management of cropping systems and irrigation water will depend on our ability to maximize crop water productivity (yield per unit water used by the crop). This, in turn, requires a better understanding and evaluation of complex plant traits, better management of interacting agricultural inputs, and better tools to more efficiently manage agricultural water supplies, especially in the face of greater competition and less water availability. Finally, there is increased efficiency at the farm scale that can be realized with better farm-scale decision making. The overarching goal of this research is to improve the sustainability of irrigated farming systems for agronomic producers in semi-arid and arid regions. These producers vary both in control over the timing and amount of irrigation, and in methods of irrigation; thus multi-faceted solutions are required. Solutions are in three parts: 1) increasing the knowledge base of plant traits, mechanisms and agronomic practices related to crop productivity under limited water; 2) developing tools to assist with real-time decision making for irrigation management; and 3) developing information and tools for farm-scale decision-making regarding crop selection, land area partitioning among crops, and within-farm irrigation distribution. This research will lead to better understanding of crop physiology needed to improve germplasm, increased productivity of cropping systems, and improved irrigation management.