Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Bioenergy Research » People & Locations » Sarah Frazer

Sarah E Frazer
Bioenergy Research
Biological Science Lab Technician

Phone: (309) 681-6187
Fax: (309) 681-6427
Room 3304

1815 N. UNIVERSITY STREET
PEORIA, IL 61604

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
Recycle of fermentation process water through mitigation of inhibitors in dilute-acid corn stover hydrolysate Reprint Icon - (Peer Reviewed Journal)
Nichols, N.N., Mertens, J.A., Dien, B.S., Hector, R.E., Frazer, S.E. 2019. Recycle of fermentation process water through mitigation of inhibitors in dilute-acid corn stover hydrolysate. Bioresource Technology. 9:100349. https://doi.org/10.1016/j.biteb.2019.100349.
Factors affecting production of xylitol by the furfural-metabolizing fungus Coniochaeta ligniaria - (Peer Reviewed Journal)
Nichols, N.N., Hector, R.E., Frazer, S.E. 2019. Factors affecting production of xylitol by the furfural-metabolizing fungus Coniochaeta ligniaria. Current Trends in Microbiology. 12: 109-119.
Genetic transformation of Coniochaeta sp. 2T2.1, key fungal member of a lignocellulose-degrading microbial consortium Reprint Icon - (Peer Reviewed Journal)
Nichols, N.N., Hector, R.E., Frazer, S.E. 2019. Genetic transformation of Coniochaeta sp. 2T2.1, key fungal member of a lignocellulose-degrading microbial consortium. Biology Methods and Protocols. 4:1-5. https://doi.org/10.1093/biomethods/bpz001.
Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate Reprint Icon - (Peer Reviewed Journal)
Nichols, N.N., Quarterman, J.C., Frazer, S.E. 2018. Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate. Biology Methods and Protocols. 3(1)bpx012. doi: 10.1093/biomethods/bpx012.
Production of xylitol from biomass using an inhibitor-tolerant fungal strain - (Abstract Only)
Nichols, N.N., Saha, B.C., Frazer, S.E. 2016. Production of xylitol from biomass using an inhibitor-tolerant fungal strain [abstract]. Frontiers in Biorefining International Conference, 11/8-11/2016, St. Simons Island, GA.
Maleic acid treatment of biologically detoxified corn stover liquor - (Peer Reviewed Journal)
Kim, D., Ximenes, E.A., Nichols, N.N., Cao, G., Frazer, S.E., Ladisch, M.R. 2016. Maleic acid treatment of biologically detoxified corn stover liquor. Bioresource Technology. 216:437-445. doi: 10.1016/j.biortech.2016.05.086.
Maleic acid treatment of bioabated corn stover liquors improves cellulose conversion to ethanol - (Abstract Only)
Kim, D., Ximenes, E.A, Nichols, N.N., Cao, G., Frazer, S.E., Ladisch, M.R. 2016. Maleic acid treatment of bioabated corn stover liquors improves cellulose conversion to ethanol [abstract]. Biotechnology for Fuels and Chemicals. M66
Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors - (Abstract Only)
Cao, G., Ximenes, E., Nichols, N.N., Frazer, S.E., Kim, D., Cotta, M.A., Ladisch, M.R. 2015. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors [abstract]. Symposium on Biotechnology for Fuels and Chemicals.
Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors Reprint Icon - (Peer Reviewed Journal)
Cao, G., Ximenes, E., Nichols, N.N., Frazer, S.E., Kim, D., Cotta, M.A., Ladisch, M. 2015. Bioabatement with hemicellulase supplementation to reduce enzymatic hydrolysis inhibitors. Bioresource Technology. 190:412-415.
A thermostable cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 5K Reprint Icon - (Peer Reviewed Journal)
Avci, A., Nichols, N.N., Saha, B.C., Frazer, S.E., Cotta, M.A., Donmez, S. 2015. A thermostable cyclodextrin glycosyltransferase from Thermoanaerobacter sp. 5K. Current Biotechnology. 3(4):305-312.
Biological abatement of inhibitors in rice hull hydrolyzate and fermentation to ethanol using conventional and engineered microbes Reprint Icon - (Peer Reviewed Journal)
Nichols, N.N., Hector, R.E., Saha, B.C., Frazer, S.E., Kennedy, G.J. 2014. Biological abatement of inhibitors in rice hull hydrolyzate and fermentation to ethanol using conventional and engineered microbes. Biomass and Bioenergy. 67:79-88.
Biological inhibitor abatement and ethanol fermentation of sugars from dilute acid-pretreated rice hulls - (Abstract Only)
Nichols, N.N., Cotta, M.A., Saha, B.C., Frazer, S.E., Kennedy, G.J. 2011. Biological inhibitor abatement and ethanol fermentation of sugars from dilute acid-pretreated rice hulls [abstract]. In: Proceedings of the 33rd Symposium on Biotechnology for Fuels and Chemicals, May 2-5, 2011, Seattle, Washington. Paper No. 1-58.