Skip to main content
ARS Home » Research » Publications at this Location » Publication #363982

Research Project: Japanese Encephalitis Virus Prevention and Mitigation Strategies

Location: Location not imported yet.

Title: A spatio-temporal individual-based network framework for West Nile virus in the USA: Spreading pattern of West Nile virus

Author
item MOON, SIFAT - Kansas State University
item Cohnstaedt, Lee
item McVey, David
item SCOGLIO, CATERINA - Kansas State University

Submitted to: PLoS Computational Biology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 2/17/2019
Publication Date: 3/13/2019
Citation: Moon, S.A., Cohnstaedt, L.W., McVey, D.S., Scoglio, C.M. 2019. A spatio-temporal individual-based network framework for West Nile virus in the USA: Spreading pattern of West Nile virus. PLoS Computational Biology. 15(3):E1006875. https://doi.org/10.1371/journal.pcbi.1006875.
DOI: https://doi.org/10.1371/journal.pcbi.1006875

Interpretive Summary: The underlying pattern of West Nile virus (WNV) geographic spread across the United States is not completely clear, which is a necessary step for continental or state level mitigation strategies to reduce WNV transmission. We report a network model that explains the geographic spread of WNV in the United States. West Nile virus is a mosquito-borne pathogen that infects many avian species with different movement ranges. From our research, we found that migration patterns and routes play an essential role in the WNV spatial distribution. The virus spreads in all directions at short distances because of local birds and short-distance migratory birds. However, the virus also disperses long distances along the avian migratory routes. Our model is designed to be flexible and therefore can be used to explore spreading patterns of other infectious diseases in other geographic locations.

Technical Abstract: West Nile virus (WNV)—a mosquito-borne arbovirus—entered the USA through New York City in 1999 and spread to the contiguous USA within three years while transitioning from epidemic outbreaks to endemic transmission. The virus is transmitted by vector competent mosquitoes and maintained in the avian populations. WNV spatial distribution is mainly determined by the movement of residential and migratory avian populations. We developed an individual-level heterogeneous network framework across the USA with the goal of understanding the long-range spatial distribution of WNV. To this end, we proposed three distance dispersal kernels model: 1) exponential—short-range dispersal, 2) power-law—long-range dispersal in all directions, and 3) power-law biased by flyway direction —long-range dispersal only along established migratory routes. To select the appropriate dispersal kernel we used the human case data and adopted a model selection framework based on approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From estimated parameters, we find that the power-law biased by flyway direction kernel is the best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV transmission is mainly along the migratory bird flyways. Through extensive simulation from 2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that mosquito population reduction in the infected states and neighboring states is potentially cost-effective.