Location: Northwest Sustainable Agroecosystems Research
Title: Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolidsAuthor
PI, HUAWEI - Chinese Academy Of Sciences | |
Sharratt, Brenton | |
SCHILLINGER, WILLIAM - Washington State University | |
BARY, ANDREW - Washington State University | |
COGGER, CRAIG - Washington State University |
Submitted to: Aeolian Research
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 1/30/2018 Publication Date: 2/2/2018 Publication URL: http://handle.nal.usda.gov/10113/5916075 Citation: Pi, H., Sharratt, B.S., Schillinger, W., Bary, A., Cogger, C. 2018. Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolids. Aeolian Research. 32:53-59. https://doi.org/10.1016/j.aeolia.2018.01.009. DOI: https://doi.org/10.1016/j.aeolia.2018.01.009 Interpretive Summary: Wind erosion of agricultural lands threatens the soil resource and air quality in the Inland Pacific Northwest. Management practices are therefore sought that will reduce wind erosion. ARS and Washington State University scientists found that biosolids applied to lands have the potential to reduce wind erosion, particularly under highly erodible field conditions. Land application of biosolids may be a sustainable management option for farmers to meet crop fertilizer requirements, improve soil health, and conserve the soil resource. Technical Abstract: While land application of biosolids is recognized as a sustainable management practice for enhancing soil health, no studies have determined the effects of biosolids on soil wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolid fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Little difference in soil loss was observed between biosolid and synthetic fertilizer treatments, but this result appeared to be dependent on susceptibility of the soil to erosion. Regression analysis between soil loss from fertilizer or tillage treatments indicated that soil loss was lower from biosolid versus synthetic fertilizer and undercutter versus disk tillage at high erosion rates. Our results suggest that biosolids may reduce wind erosion under highly erodible conditions. |