Author
LIU, JIAYANG - University Of Georgia | |
Wang, Ming | |
Tonnis, Brandon | |
HABTESELASSIE, MUSSIE - University Of Georgia | |
LIAO, XIANGRU - Jiangxi Agricultural University | |
HUANG, QINGGUO - University Of Georgia |
Submitted to: Bioresource Technology
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 10/23/2012 Publication Date: 10/30/2012 Citation: Liu, J., Wang, M.L., Tonnis, B.D., Habteselassie, M., Liao, X., Huang, Q. 2012. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresource Technology. 135:39-45. Interpretive Summary: We in this study investigated fungal pretreatment of switchgrass involving solid state fermentation (SSF) to improve saccharification and simultaneously produce enzymes as co-products. The results revealed that the fungus Pycnoporus sp. SYBC-L3 can significantly degrade lignin and enhance enzymatic hydrolysis efficiency. After a 36-d cultivation period, a nearly 30 % reduction in lignin content was obtained without significant loss of cellulose and hemicellulose, while a considerable amount of laccase, as high as 6.3 U/g, was produced. After pretreatment, pores on switchgrass surface were observed using scanning electron microscopy (SEM). The enzymatic hydrolysis efficiency for the switchgrass with 36-d pretreatment was about 50 % greater than the untreated one. Our results suggest that solid-state fungal cultivation may be a good method for switchgrass pretreatment, which can simultaneously achieve high efficiency of enzymatic hydrolysis and production of some useful enzymes for other industrial utilization. Technical Abstract: Fungal pretreatment of switchgrass involving solid state fermentation (SSF) to improve saccharification and simultaneously produce enzymes as co-products was investigated in this study. The results revealed that the fungus Pycnoporus sp. SYBC-L3 can significantly degrade lignin and enhance enzymatic hydrolysis efficiency. After a 36-d cultivation period, a nearly 30 % reduction in lignin content was obtained without significant loss of cellulose and hemicellulose, while a considerable amount of laccase, as high as 6.3 U/g, was produced. After pretreatment, pores on switchgrass surface were observed using scanning electron microscopy (SEM). The enzymatic hydrolysis efficiency for the switchgrass with 36-d pretreatment was about 50 % greater than the untreated one. Our results suggest that solid-state fungal cultivation may be a good method for switchgrass pretreatment, which can simultaneously achieve high efficiency of enzymatic hydrolysis and production of some useful enzymes for other industrial utilization. |