Skip to main content
ARS Home » Plains Area » Fargo, North Dakota » Edward T. Schafer Agricultural Research Center » Insect Genetics and Biochemistry Research » Research » Research Project #437657

Research Project: Enhancing Pollinator Health and Availability Through Conservation of Genetic Diversity and Development of Novel Management Tools and Strategies

Location: Insect Genetics and Biochemistry Research

Project Number: 3060-21220-032-00-D
Project Type: In-House Appropriated

Start Date: Jan 7, 2020
End Date: Jan 6, 2025

Objective 1: Enhance the overwintering health and survivorship of honey bees and alternative pollinators through the characterization and remediation of abiotic and biotic stressors, especially those in northern U.S. latitudes. Subobjective 1A: Characterize the physiological mechanisms of cold tolerance in stored Megachile rotundata and other important insects. Subobjective 1B: Characterize the sublethal effects of cold storage under field conditions and the effects of field conditions on progeny storability during diapause in Megachile rotundata and other important insects. Subobjective 1C: Characterize the sublethal effects of stress incurred during shipping and storage of honey bees and other important insects. Objective 2: Develop transferrable and quality proven germplasm cryopreservation technologies for honey bees, alternative pollinators and other insects of importance. Subobjective 2A: Improve cryopreservation protocols for male honey bee germplasm. Subobjective 2B: Development of a standardized embryo cryopreservation protocol for honey bees and other insects of economic importance . Subobjective 2C: Development of in vitro rearing technologies for honey bee.

In the United States the number of colonies has dropped by 61% since the 1940s. Managed bees are subjected to various stressors that, while not lethal in and of themselves, can induce developmental/behavioral abnormalities (sublethal effects) that decrease the availability and quality of the bees. What we currently don’t understand is which stressors are inducing these sublethal effects and which developmental stages are the most vulnerable. With the decline in the populations of the honey bee and non-Apis bees, there is the real risk of losing genetic diversity that is needed for conservation and breeding programs. Despite their agricultural importance, there is no germplasm repository for any bee species. The goals of this project are to deliver high quality pollinators to the end users, by reducing management-induced stressors and to establish user friendly cryopreservation techniques for honey bees and other non-Apis species. Specifically, we propose to address the following questions: 1) What are the molecular responses to management stress and do they change over the course of development? 2) What are the major stressors that are leading to sublethal effects in managed pollinators? 3) Can pollinator quality under field conditions be improved by ameliorating management stress? 4) Can the physiological effects of honey bee spermatozoa cryopreservation by ameliorated by technical improvements, and can said techniques be adapted to non-Apis bee species? 5) Can honey bee embryonic cryopreservation techniques, including recovery from cryopreservation and subsequent in vitro rearing be standardized into a user accessible protocol?