Skip to main content
ARS Home » Northeast Area » Boston, Massachusetts » Jean Mayer Human Nutrition Research Center On Aging » Research » Research Project #436753

Research Project: Cancer Prevention with Dietary Phytochemicals

Location: Jean Mayer Human Nutrition Research Center On Aging

Project Number: 8050-51000-106-02-S
Project Type: Non-Assistance Cooperative Agreement

Start Date: May 14, 2019
End Date: Sep 30, 2021

Objective:
Objective 1: Investigate mechanistically the anti-inflammatory and anti-carcinogenic effect of phytochemical-rich whole food approaches, and purified phytochemicals as well as their derivatives, in preventing inflammation-promoted (e.g., induced by a high-sugar diet, diabetes, and aging) cancer development. Objective 2: Determine the ability of phytochemical-rich whole foods and dietary phytochemicals to prevent cancer development in liver and colon by targeting multiple signaling pathways (e.g. membrane and nuclear receptors) and inter-organ crosstalk (among liver, pancreas, mesenteric adipose tissue, and gut microbiome).

Approach:
We will conduct animal studies to investigate how one dietary phytochemical, xanthophyll beta-cryptoxanthin (BCX), inhibits metabolic syndrome, nonalcoholic fatty liver disease and liver cancer (hepatocellular carcinoma) development in the liver. Of particular interest is understanding how BCX prevents the development of hepatocellular carcinoma in rodents consuming a diet high in refined carbohydrates (HRCD). We will examine the protective effects of intact BCX, independent of its metabolites, regulating key cell signaling pathways in both young and old animals. We will examine multiple organs (liver, pancreas, adipose tissue, and gut) as well as how these organs communicate, while noting gender differences. Specifically, we will use genetically-altered carotenoid cleavage enzyme (beta-carotene 15,15’-oxygenase and beta-carotene 9’,10’-oxygenase) double knockout mice strains to determine whether HRCD-induced liver metabolic syndrome and tumorigenesis can be prevented by intact BCX itself or sweet red pepper extract (SRPE)-rich in BCX. We will treat mice (male and female) with a single injection of a hepatic carcinogen, diethylnitrosamine (DEN), followed by continued exposure to HRCD with or without BCX (or SRPE) intervention. We will examine the effects of dietary BCX intervention against fatty liver, inflammation, fibrosis, and in livers. We will investigate the protective effects of xanthophyll BCX against HRCD-promoted HCC in both young and old mice respectively. We will determine if the BCX protective action process a common mechnism or pathway, such as intestinal permeability/gap junction/adipose/liver axis, salvage pathway of NAD+ biosynthesis enzyme, and circadian transcription factors, and thereby reducing aging/metabolic syndrome associated liver cancer development.