Skip to main content
ARS Home » Northeast Area » Ithaca, New York » Robert W. Holley Center for Agriculture & Health » Plant, Soil and Nutrition Research » Research » Research Project #434556

Research Project: Mapping Crop Genome Functions for Biology-Enabled Germplasm Improvement

Location: Plant, Soil and Nutrition Research

2018 Annual Report

Apply computational, genomic, genetic and/or systems biology approaches to develop new models for plant genome structure and organization that advance our understanding of plant evolution and diversity. 1.1: Establish an integrated reference genome resource for plant genomes. 1.2: Analysis and visualization of genotypic, epigenomic, and functionally phenotypic diversity. 1.3: Comparative genomics: analysis of plant genomes (stewardship of reference resource) and visualization informed by evolutionary histories. 2: Analyze and develop genome level regulatory network models that focus on and integrate the processes underlying plant development and responses to environmental change. 2.1: Develop genome-wide functional networks for the model plant genome Arabidopsis. 2.2: Crop GRNs to support functional prediction for agriculturally relevant phenotypes. 3: Collaborate, develop and implement new standards for the management and analysis of plant genomic, genetic and phenotypic information to facilitate integration and interoperability between biological databases. 4: Facilitate the use of genomic and genetic data, information, and tools for germplasm improvement, thus empowering ARS scientists and partners to use a new generation of computational tools and resources. 5: Accelerate sorghum trait analysis, germplasm analysis, genetic studies, and breeding by acquiring, integrating, and providing open access to sorghum genome sequences and annotations, germplasm diversity information, trait mapping information, and phenotype information in a sorghum crop genome database system, with an initial emphasis on sugarcane aphid resistance.

We propose to leverage emerging and standard computational and experimental approaches, building on existing and newly developed resources to support stewardship of plant genome reference sequences, genome annotations and gene networks. This will support development of a common standard platform for comparative genomic analysis and visualization. The enriched genome annotations will include controlled vocabularies to describe metadata and primary data associated with comparative phylogenomics, epigenetics, and population-based phenotypes.

Progress Report
Since this project just began in April 2018, there is no significant progress to report. Please refer to the annual report for project 8062-21000-041-00D, titled, "Enhancing Plant Genome Function Maps through Genomic, Genetic, Computational and Collaborative Research," for more information.