Skip to main content
ARS Home » Pacific West Area » Albany, California » Plant Gene Expression Center » Research » Research Project #434411

Research Project: Conserved Genes and Signaling Networks that Control Environmental Responses of C4 Grain Crops

Location: Plant Gene Expression Center

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

Impact of the sickle mutant and temperature on the structure of transcripts and RNAs from Arabidopsis thaliana Reprint Icon - (Peer Reviewed Journal)
Marshall, C.M., Harmon, F.G. 2022. Impact of the sickle mutant and temperature on the structure of transcripts and RNAs from Arabidopsis thaliana. BMC Research Notes. 15(1):110. https://doi.org/10.1186/s13104-022-05963-y.

72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution Reprint Icon - (Peer Reviewed Journal)
Lai, X., Bendix, C., Zhang, Y., Schnable, J.C., Harmon, F.G. 2021. 72-hour diurnal RNA-seq analysis of fully expanded third leaves from maize, sorghum, and foxtail millet at 3-hour resolution. BMC Research Notes. 14. Article 24. https://doi.org/10.1186/s13104-020-05431-5.

A sorghum gigantea mutant attenuates florigen gene expression and delays flowering time Reprint Icon - (Peer Reviewed Journal)
Abdul-Awal, S., Chen, J., Xin, Z., Harmon, F.G. 2020. A sorghum gigantea mutant attenuates florigen gene expression and delays flowering time. Plant Direct. 4(11). Article e00281. https://doi.org/10.1002/pld3.281.

Temporal regulation of metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis Reprint Icon - (Peer Reviewed Journal)
Li, Z., Zhu, A., Song, Q., Chen, H.Y., Harmon, F.G., Chen, Z. 2020. Temporal regulation of metabolome and proteome in photosynthetic and photorespiratory pathways contributes to maize heterosis. The Plant Cell. 32(12):3706-3722. https://doi.org/10.1105/tpc.20.00320.

Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs Reprint Icon - (Peer Reviewed Journal)
Lai, X., Bendix, C., Yan, L., Zhang, Y., Schnable, J., Harmon, F.G. 2020. Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. BMC Genomics. 21. Article 428. https://doi.org/10.1186/s12864-020-06824-3.

MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants Reprint Icon - (Peer Reviewed Journal)
Basso, M.F., Ferreira, P.G., Kobayashi, A.K., Harmon, F.G., Nepomuceno, A.L., Molinari, H.C., Grossi-de-Sa, M.F. 2019. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnology Journal. 17(8):1482-1500. https://doi.org/10.1111/pbi.13116.

Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization Reprint Icon - (Peer Reviewed Journal)
Nakayama, T.J., Rodrigues, F.A., Neumaier, N., Marcolina-Gomes, J., Molinari, H.B., Santiago, T.R., Formighieri, E.F., Basso, M.F., Farias, J.R., Emygdio, B.M., De Oliveira, A.C., Campos, A.D., Borem, A., Coleman-Derr, D.A., Mertz-Henning, L.M., Nepomuceno, A. 2017. Insights into soybean transcriptome reconfiguration under hypoxic stress: Functional, regulatory, structural, and compositional characterization. PLoS One. 12(11):e0187920. https://doi.org/10.1371/journal.pone.0187920.