Skip to main content
ARS Home » Plains Area » Fargo, North Dakota » Edward T. Schafer Agricultural Research Center » Animal Metabolism-Agricultural Chemicals Research » Research » Research Project #430408

Research Project: Detection and Fate of Chemical and Biological Residues in Food and Environmental Systems

Location: Animal Metabolism-Agricultural Chemicals Research

Project Number: 3060-32420-001-00-D
Project Type: In-House Appropriated

Start Date: Feb 4, 2016
End Date: Feb 3, 2021

Objective 1: Develop and (or) validate sensitive and accurate analytical tools to rapidly detect and quantify chemicals in food animals, food animal products, or other foods. Sub-objective 1.A: Validate the usefulness of rapid screening tests in ante-mortem matrices (urine, plasma, serum, saliva, milk, etc.) for predicting post-mortem tissue residues and(or) animal exposures to target compounds. Sub-objective 1.B: Develop and validate on-site detection methods for new and emerging xenobiotic residues. Objective 2: Investigate the kinetics of uptake, metabolism, distribution, and (or) the elimination of chemicals in and from food animals and (or) produce with the goal of reducing public exposure to chemical residues in foods. Sub-objective 2.A: Determine the effect of mediators of inflammation on drug metabolizing enzymes, drug clearance, and violative residues in food animals using flunixin meglumine as a model compound. Sub-objective 2.B: Determine the fate and distribution of chlorine dioxide gas in foods treated for pathogen or rot-organism remediation. Objective 3: Determine the fate of endogenous reproductive hormones, antibiotics, and or other chemicals, including biologically-active metabolites or degradation products in wastes of food animal or in food processing systems. Sub-objective 3A: Determine the partitioning of chemical residues into cream, curd, whey, and water fractions during milk processing. Sub-objective 3B: Determine the fate of estrogens in animal wastewater systems.

The broad objective of this project is to determine the fate of natural and manmade chemicals in food animals and in food animal systems (wastes, soil, water). Three broad classes of chemicals will be targeted for study: (1) veterinary drugs or feed additives administered to food animals under extra-label use conditions, (2) endogenous steroid hormones, and (3) novel developmental chemicals of potential utility to the livestock industry. Use of veterinary chemicals in an extra-label manner without knowledge of residue depletion kinetics has led to unsafe residues in meat products. Endogenous steroid hormones excreted by livestock are highly potent endocrine-disrupting compounds that are thought to disrupt the development of aquatic species after their entry into surface waters. Finally, chemical technologies developed by the ARS, e.g., chloroxyanions and nitro compounds, are active against Salmonella and E. coli pathogens in livestock immediately prior to slaughter, but the impacts of chemical residues in meat products have not been fully investigated for these compounds. Regardless of the chemical class being investigated, the development of sensitive and accurate analytical tools is critical completion of the objectives. Therefore, a significant portion of the project is devoted to developing the analytical tools required to ensure success of the project. The overall project goal is to understand the broad impact that chemical residues play in influencing food and environmental safety.