Location: Cotton Chemistry and Utilization Research
Project Number: 6054-41430-007-000-D
Project Type: In-House Appropriated
Start Date: May 6, 2015
End Date: May 5, 2020
Objective:
1. Enable, from a technological standpoint, new commercial processes for the production of cotton-based products with enhanced flame retardant and moisture control properties.
2. Enable new commercial processes for manufacturing cotton-based body-contacting materials for use in biomedical, biosensor and hygienic applications.
3. Enable new commercial processes involving supercritical fluids, microwaves, ultrasound, or ionic liquids for the production of cotton-based products.
Approach:
The U.S. cotton industry continues to face supply and demand concerns. Since cotton is used in manufactured products, the industry has been challenged by the downsizing of manufacturing facilities that traditionally provide a major underpinning to domestic cotton consumption. Thus, with the goal of giving U.S. cotton utilization a competitive edge, research emphasis will be placed in cotton fiber science and product development where consumer and industrial needs are unmet and show promise. Some of the areas of consumer need for cotton products and process potential are flame retardant durable goods and apparel, and nonwoven body-contacting materials including improved wound dressings and hygienic/incontinence nonwovens, advanced nonmaterial’s. Enabling technologies that will enhance the likelihood of success and keep pace with industrial innovations include enzymatic bioprocessing, microwave-assisted synthesis and nanotechnology. To accomplish this, a three part approach will be taken: 1) Synthesizing FR compounds will include cross-linking small molecules, binding agents and reactive electrophilic functionalities. The treated fabrics will be tested using standard FR tests and the pyrolysis mechanism and gas emissions will be assessed to develop robust FR treatments for potential commercialization. 2) A broad set of characteristics implies a varied approach to design and preparation of cotton-based prototypes as body-contacting materials. Hemostatic and chronic wound dressings, incontinence absorbents, associated top sheet(s), and contiguous acquisition and absorbent layers of these materials constitute one general group, and nanocellulosic protease biosensors still another. Structure activity relations in turn rely on structural analysis including electrokinetic parameters (fiber surface chemistry),fluorescence, colorimetry, infrared spectroscopy, x-ray crystallography, and computational chemistry to list some of the primary and pivotal technologies to enable structure activity relations. 3) Four technological processes (supercritical carbon dioxide fluid, microwave radiation, ultrasonic energy, and ionic liquids) will be collectively explored as avenues of research, leading to the development of value-added products derived from cotton cellulosic sources. This multifaceted technological approach will ensure that leads are generated in the form of novel synthetic flame retardant (FR) compounds, nonmaterial’s, extruded bioorganic fibers, moisture control fabrics, ethanolic biofuel, and bio-finished cotton fabrics.