Skip to main content
ARS Home » Southeast Area » New Orleans, Louisiana » Southern Regional Research Center » Food and Feed Safety Research » People & Locations » Raj Majumdar

Raj Majumdar
Food and Feed Safety Research
Research Molecular Biologist

Phone: (504) 286-4264
Fax:

1100 ROBERT E. LEE BLVD
BLDG 001 SRRC
NEW ORLEANS , LA 70179

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)
Contribution of maize polyamine and amino acid metabolism towards resistance against Aspergillus flavus infection and aflatoxin production -
Inhibition of Aspergillus flavus a-amylase to reduce aflatoxin contamination in maize: an in vitro kernel-screening assay to monitor fungal growth and toxin production -
Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus -
Lebar, M.D., Cary, J.W., Majumdar, R., Carter-Wientjes, C.H., Mack, B.M., Wei, Q., Uka, V., De Saeger, S., Diana Di Mavungu, J. 2018. Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus. Fungal Genetics and Biology. 116:14-23.
Aspergillus flavus secondary metabolites: more than just aflatoxins -
Cary, J.W., Gilbert, M.K., Lebar, M.D., Majumdar, R., Calvo, A.M. 2018. Aspergillus flavus secondary metabolites: more than just aflatoxins. Food Safety. 6(1):7-32. https://doi.org/10.14252/foodsafetyfscj.2017024.
RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels -
Gilbert, M.K., Majumdar, R., Rajasekaran, K., Chen, Z.-Y., Wei, Q., Sickler, C.M., Lebar, M.D., Cary, J.W., Frame, B.R., Wang, K. 2018. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta. 247:1465–1473. https://doi.org/10.1007/s00425-018-2875-0.
The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels -
Majumdar, R., Lebar, M.D., Mack, B.M., Minocha, R., Minocha, S., Carter-Wientjes, C.H., Sickler, C.M., Rajasekaran, K., Cary, J.W. 2018. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels. Frontiers in Plant Science. 9:317. https://doi.org/10.3389/fpls.2018.00317.
Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182 -
Rajasekaran, K., Sayler, R.J., Sickler, C.M., Majumdar, R., Jaynes, J.M., Cary, J.W. 2018. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Science. 270:150-156. https://doi.org/10.1016/j.plantsci.2018.02.006.
The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production -
Cary, J.W., Harris-Coward, P.Y., Scharfenstein, L.L., Mack, B.M., Chang, P.-K., Wei, Q., Lebar, M.D., Carter-Wientjes, C.H., Majumdar, R., Mitra, C., Banerjee, S., Chanda, A. 2017. The Aspergillus flavus homeobox gene, hbx1, is required for development and aflatoxin production. Toxins. 9(10):315. https://doi.org/10.3390/toxins9100315.
The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination -
Majumdar, R., Rajasekaran, K., Sickler, C.M., Lebar, M.D., Musungu, B.M., Fakhoury, A.M., Payne, G.A., Geisler, M., Carter-Wientjes, C.H., Wei, Q., Bhatnagar, D., Cary, J.W. 2017. The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination. Frontiers in Plant Science. 8:1758. https://doi.org/10.3389/fpls.2017.01758.
Fidelity of a simple Liberty leaf-painting assay to validate transgenic maize plants expressing the selectable marker gene, bar -
Rajasekaran, K., Majumdar, R., Sickler, C.M., Wei, Q., Cary, J.W., Bhatnagar, D. 2017. Fidelity of a simple Liberty leaf-painting assay to validate transgenic maize plants expressing the selectable marker gene, bar. Journal of Crop Improvement. 31(4):628-636. doi:10.1080/15427528.2017.1327913.
RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations -
Majumdar, R., Rajasekaran, K., Cary, J.W. 2017. RNA interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Frontiers in Plant Science. 8:200. doi:10.3389/fpls.2017.00200.
Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression -
Majumdar, R., Mahanil, S., Lillis, J.A., Osier, M., Reisch, B., Cadle Davidson, L.E. 2015. Silencing of grapevine pectate lyase-like genes VvPLL2 and VvPLL3 confers resistance against Erysiphe necator and differentially modulates gene expression. Annual International Plant & Animal Genome Conference, San Diego, CA.
Application of Genotyping-By-Sequencing for selection of locus-specific BAC clones to construct physical maps and identify candidate genes in Vitis Reprint Icon -
Lillis, J.A., Majumdar, R., Ledbetter, C.A., Cadle Davidson, L.E. 2015. Application of Genotyping-By-Sequencing for selection of locus-specific BAC clones to construct physical maps and identify candidate genes in Vitis. Annual International Plant & Animal Genome Conference. P0876: 15550.