Skip to main content
ARS Home » Pacific West Area » Maricopa, Arizona » U.S. Arid Land Agricultural Research Center » Pest Management and Biocontrol Research » Research » Publications at this Location » Publication #379293

Research Project: Sustainable Pest Management for Arid-Land Agroecosystems

Location: Pest Management and Biocontrol Research

Title: Sustainable management of insect-resistant crops

Author
item FLEISCHER, SHELBY - Pennsylvania State University
item HUTCHISON, WILIIAM - University Of Minnesota
item Naranjo, Steven

Submitted to: Book Chapter
Publication Type: Book / Chapter
Publication Acceptance Date: 11/15/2020
Publication Date: 11/16/2020
Citation: Fleischer, S.J., Hutchison, W.D., Naranjo, S.E. 2020. Sustainable management of insect-resistant crops. pp. 111-126 in Plant Biotechnology - Experience and Future Prospects, 2nd Ed., A. Ricroch, S. Chopra, M. Kuntz (eds.), Springer, Dordrecht-Heidelberg-London-New York. https://doi.org/10.1007/978-3-319-06892-3_10.
DOI: https://doi.org/10.1007/978-3-319-06892-3_10

Interpretive Summary: Sustainability is a goal-oriented process that advances with new knowledge. We discuss factors relevant to insect-resistant crops and sustainability: adoption patterns, insecticide use patterns and their influence on humans, biological control, areawide effects, and evolution of populations resistant to genetically engineered (GE) crops. GE insect-resistant crops were introduced at a time when insecticide options and use patterns were changing. Management of lepidopteran and coleopteran pests has been achieved through constitutive expression of proteins derived from the crystalline spore and the vegetative stage of various strains of Bacillus thuringiensis. Management of aphid-transmitted viruses has been achieved through expression of viral coat proteins. Adoption patterns have been rapid where use is allowed. Areawide reductions in pest populations have occurred in cotton and maize in multiple parts of the world, enabled eradication programs, and conferred significant economic benefits to crops that are not GE. Insecticide use has decreased dramatically in cotton, leading to improved biological control, reductions in pesticide poisonings, and changes in species composition that achieve pest status. Pro-active resistance management programs, the first to be deployed in all of agriculture, has slowed but not stopped the evolution of resistant populations. Nine pest species have evolved resistance to one or more Bt proteins. Future constructs may provide induced or tissue-specific expression or use RNAi to deliver protection from insect pests. Constructs that alter plant metabolism, to achieve drought tolerance, nitrogen-utilization, or biomass conversion efficiency, may also affect insect populations and communities. Sustainable management of insect-resistant GE crops requires consideration of regional effects of both the genetics and densities of mobile target insect populations. The underlying assumption of IPM, that multiple and diverse management tactics are more sustainable, continues to be highly relevant, and necessary, to maintain the utility of GE crops, to manage the wider community of species relevant to agroecosystems, and to enable agriculture to adapt to change.

Technical Abstract: Sustainability is a goal-oriented process that advances with new knowledge. We discuss factors relevant to insect-resistant crops and sustainability: adoption patterns, insecticide use patterns and their influence on humans, biological control, areawide effects, and evolution of populations resistant to genetically engineered (GE) crops. GE insect-resistant crops were introduced at a time when insecticide options and use patterns were changing. Management of lepidopteran and coleopteran pests has been achieved through constitutive expression of proteins derived from the crystalline spore and the vegetative stage of various strains of Bacillus thuringiensis. Management of aphid-transmitted viruses has been achieved through expression of viral coat proteins. Adoption patterns have been rapid where use is allowed. Areawide reductions in pest populations have occurred in cotton and maize in multiple parts of the world, enabled eradication programs, and conferred significant economic benefits to crops that are not GE. Insecticide use has decreased dramatically in cotton, leading to improved biological control, reductions in pesticide poisonings, and changes in species composition that achieve pest status. Pro-active resistance management programs, the first to be deployed in all of agriculture, has slowed but not stopped the evolution of resistant populations. Nine pest species have evolved resistance to one or more Bt proteins. Future constructs may provide induced or tissue-specific expression or use RNAi to deliver protection from insect pests. Constructs that alter plant metabolism, to achieve drought tolerance, nitrogen-utilization, or biomass conversion efficiency, may also affect insect populations and communities. Sustainable management of insect-resistant GE crops requires consideration of regional effects of both the genetics and densities of mobile target insect populations. The underlying assumption of IPM, that multiple and diverse management tactics are more sustainable, continues to be highly relevant, and necessary, to maintain the utility of GE crops, to manage the wider community of species relevant to agroecosystems, and to enable agriculture to adapt to change.