Skip to main content
ARS Home » Plains Area » Las Cruces, New Mexico » Range Management Research » Research » Publications at this Location » Publication #320434

Research Project: MANAGEMENT TECHNOLOGIES FOR CONSERVATION OF WESTERN RANGELANDS

Location: Range Management Research

Title: Linked hydrologic and social systems that support resilience of traditional irrigation communities

Author
item FERNALD, A. - New Mexico State University
item GULDAN, S. - New Mexico State University
item BOYKIN, K. - New Mexico State University
item CIBILS, A. - New Mexico State University
item GONZALES, M. - University Of New Mexico
item HURD, B. - University Of New Mexico
item LOPEZ, S. - University Of New Mexico
item OCHOA, C. - Oregon State University
item ORTIZ, M. - Non ARS Employee
item RIVERA, J. - University Of New Mexico
item RODRIGUEZ, S. - University Of New Mexico
item STEELE, C. - New Mexico State University

Submitted to: Hydrology and Earth System Sciences
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 11/21/2014
Publication Date: 1/16/2015
Publication URL: http://handle.nal.usda.gov/10113/61729
Citation: Fernald, A., Guldan, S., Boykin, K., Cibils, A., Gonzales, M., Hurd, B., Lopez, S., Ochoa, C., Ortiz, M., Rivera, J., Rodriguez, S., Steele, C. 2015. Linked hydrologic and social systems that support resilience of traditional irrigation communities. Hydrology and Earth System Sciences. 19:293-307.

Interpretive Summary: This paper reviews the resilience of rural communities and their environments in irrigated landscapes in northern New Mexico. The dynamics of the hydrologic, social and economic systems are explored with reference to pressures from climate warming, changing land use and economic changes.

Technical Abstract: Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems, though not immune to upheaval, have astonishing resilience.