Skip to main content
ARS Home » Midwest Area » Ames, Iowa » National Laboratory for Agriculture and The Environment » Agroecosystems Management Research » Research » Research Project #433200

Research Project: Reducing Production Losses due to Oxidative Stress and Bacterial Pathogens in Swine

Location: Agroecosystems Management Research

Project Number: 5030-31000-006-00-D
Project Type: In-House Appropriated

Start Date: Aug 12, 2017
End Date: Aug 11, 2022

Objective:
The objectives of the project are to develop an understanding of the interrelationships between non-antibiotic feed additives and pathogen translocation and shedding in growing pigs, obtain critical measures of oxidative stress in growing pigs and reproducing swine, and develop interventions to reduce or prevent pathogen colonization and disease in swine in an effort to maximize production efficiency but minimize environmental impact. Objective 1: Evaluate alternatives to antibiotics (butyric acid, resistant starch, inulin, etc.) for maintaining growth performance and reducing intestinal bacterial translocation and shedding in growing pigs. Objective 2: Determine the inherent variation in oxidative stress measures in breeding and lactating gilts, and correlate to measures of sow lifetime productivity. Objective 3: Identify markers associated with oxidative stress and correlate to changes in pig growth and feed intake, using peroxidized soybean oil as the inducer of oxidative stress. Objective 4: Determine whether vaccination of swine with a Salmonella DIVA vaccine can prevent/reduce colonization and improve growth following transmission of Salmonella from actively shedding pigs.

Approach:
Alternatives to antibiotics for growing pigs will be assessed through the evaluation of compounds which have the potential to affect gastrointestinal function and microbial ecology which would, therefore, affect pig performance. Compounds to be evaluated include resistant starch, soluble dietary fiber, short- and medium-chain fatty acids, phytogenics, inorganic minerals, and beta-glucans; all of which have been suggested to affect gastrointestinal function and microbial ecology. Determination of the inherent variation in oxidative stress measures in breeding and lactating gilts will be assessed by collecting biological samples from gestating and lactating sows at 4 critical time points during these reproduction phases, and measuring key oxidative stress parameters (DNA, protein, and lipid damage) as well as antioxidant status (plasma vitamin E). In growing pigs, identification of markers associated with oxidative stress and impact on pig performance will be assessed by feeding peroxidized soybean oil to nursery, grower, or finishing pigs. Peroxidized soybean oil will be generated by heating soybean oil at 45°C for 288 h, 90°C for 72 h, or 180°C for 6 h, in comparison to unheated (22.5°C) soybean oil. Oxidative stress will be assessed measuring key oxidative stress parameters (e.g., DNA, protein, and lipid damage) as well as antioxidant status (e.g., plasma vitamin E) while performance effects will be measured by growth over a predetermined period. An attenuated Salmonella vaccine was previously designed and constructed to provide broad protection against numerous Salmonella serovars in food-producing animals. A Salmonella transmission trial will be performed in swine to determine whether vaccination against Salmonella can prevent or reduce Salmonella colonization and improve growth performance following exposure to pigs actively shedding Salmonella.