Skip to main content
ARS Home » Plains Area » Kerrville, Texas » Knipling-Bushland U.S. Livestock Insects Research Laboratory » Veterinary Pest Genetics Research Unit » Research » Research Project #441381

Research Project: Genetics of Veterinary Pests

Location: Veterinary Pest Genetics Research Unit

Project Number: 3094-22320-001-000-D
Project Type: In-House Appropriated

Start Date: Oct 1, 2021
End Date: Sep 30, 2026

Objective 1: Perform bioinformatic analysis of tick and fly genomes to find new targets of control and methods of surveillance. Objective 2: Develop genetic methods to control ticks and dipteran pests of livestock and wildlife, to include new vaccines through reverse vaccinology, gene editing/silencing, gene drives, and other genetic approaches to mitigate acaricide resistance.

Genetic studies on arthropods of medical and veterinary importance helps identify and elucidate gene activities in target organisms. Genomic techniques provide information on population genetics and support identifying invasive insect source populations and migration pathways, the development of gene targets for disruption or RNAi gene suppression, identifying pest species that are difficult to identify morphologically, reverse vaccinology for the discovery of new antigen candidates, and more rapid discovery of natural enemies using next generation sequencing and metagenomics. Research on fly and tick metagenomes (the entire genomic complement found in the environment) and microbiomes (the universe of microbes living in association with each pest) generates information about pathogens and commensal and symbiotic microorganisms that can be used to solve agricultural problems associated with these organisms. Scientists have worked with U.S. university partners and international institutions to generate ‘omic resources such as transcriptomes, microbiomes, and genomes for a number of livestock and human pests, including biting midges, mosquitoes, and house flies. Mosquito mitochondrial genomes sequenced using nanopore technology support the development of databases for rapid identification of field samples. Sequencing of pooled RNA-Seq is valuable for gene expression analysis of pathogens that cause disease in humans, livestock, and other animals. Understanding of genetics and bionomics are critical in the developing sustainable integrated pest management (IPM) programs. Defining the problem and selecting appropriate control strategies requires obtaining background information on pest identification (systematics and taxonomy), distribution (spatial and temporal), and behavior (particularly behaviors that cause or have the potential to cause damage). Fundamental research on pest genetics generates information that can be used to identify weaknesses of the pest; findings can also be used to help develop models that assess entomological and/or epidemiological risk to host populations. Genetic studies of pests are rapidly generating a wealth of information that can be used to develop new and adaptive pest control measures using CRISPR CAS9 and Gene Drive technologies. In practice, each genetically based control method is applied individually and locally, so it is especially challenging to project if or how laboratory results will be replicated in integrated field studies. Developing new genetic and chemical pest control measures that result in commercial IPM products often requires coordinating stakeholder efforts, funding, and other resources.