Skip to main content
ARS Home » Pacific West Area » Reno, Nevada » Great Basin Rangelands Research » Research » Research Project #436118

Research Project: Management and Restoration of Rangeland Ecosystems

Location: Great Basin Rangelands Research

Project Number: 2060-13610-003-00-D
Project Type: In-House Appropriated

Start Date: Mar 25, 2019
End Date: Mar 24, 2024

Objective:
The long-term objective of the Great Basin Rangelands Research Unit (GBRRU) project plan is to facilitate sustainability of ecosystem goods and services provided by arid rangelands with a focus on production of forage for domestic grazing animals, conservation and restoration of these rangelands, and maintaining or enhancing ecosystem processes that facilitate desired plant communities. This will be approached by addressing critical research needs affecting arid and semi-arid rangelands, including: (1) investigating the ecology and control of invasive weeds, (2) rehabilitating degraded rangelands, (3) maintaining and enhancing productive rangelands, and (4) quantifying impacts of management practices. The project will integrate basic research on Great Basin rangelands with new tools, plant materials, and technologies to reduce the spread of invasive and expanding plant populations and assess effectiveness of management practices. Specifically, during the next five years we will focus on the following objectives. Objective 1: Develop tools and strategies for maintaining and enhancing the sustainability of arid rangeland ecosystems based on an improved understanding of soil properties, plant-soil relationships, and alternative management practices. (NP215 1A, 3B, 4A) Subobjective 1A: Quantify salt mobility and transport as a function of rainfall return period on saline rangeland soils, and parameterize the Rangeland Hydrology and Erosion Model (RHEM) for estimating runoff, sediment yield and salt transport. (Weltz) Subobjective 1B: Quantify vulnerabilities to soil erosion on non-federal rangelands as part of a national assessment in collaboration with NRCS. (Weltz, Newingham) Subobjective 1C: Investigate effects of post-expansion piñon and juniper tree control and exclusionary fencing on components of the water budget and recovery of sagebrush steppe and meadow habitats and assess weather variability and impacts on plant phenology. (Snyder) Subobjective 1D: Apply bioinformatic analyses to newly developed single-nucleotide polymorphism (SNP) markers to determine whether outcrossing and heterosis in cheatgrass may facilitate invasion of new environments in Great Basin ecosystems. (Longland) Objective 2: Evaluate rangeland community productivity, responses to disturbance, and identify appropriate rehabilitation practices. (NP215 1A, 3B, 4A) Subobjective 2A: Assess effects of post-fire grazing on burned rangelands. (Newingham) Subobjective 2B: Quantify effects of arthropod seed predators in reducing seed viability of western and Utah juniper as a potential pre-establishment control strategy. (Longland) Subobjective 2C: Develop management strategies providing guidelines and tools to stakeholders for enhancing native grass productivity on Great Basin rangelands using diversionary seeding. (Longland)

Approach:
Subobjective 1A, Hypothesis: Runoff, sediment yield, and salt transport processes will increase as a non-linear function of rainfall return period through rill processes being initiated. Rainfall simulations will be conducted to quantify salt mobility and transport as a function of rainfall return period on saline rangeland soils and to parameterize the Rangeland Hydrology and Erosion Model. Subobjective 1B, Research Goal: Quantify rangeland vulnerability to soil erosion. Unit scientists and a team from the National Agricultural Library will develop the Agricultural Runoff Erosion and Salinity database. They will also expand the current understanding of wind erosion processes in the Great Basin by establishing a new post-fire National Wind Erosion Research Network site in eastern Nevada. These research activities will allow users to quantify vulnerabilities to soil erosion on rangelands. Subobjective 1C, Hypothesis: Mechanical tree control treatments for piñon and juniper will reduce precipitation interception and tree transpiration losses and result in increased soil moisture, which will increase the presence and diversity of the desired understory vegetation. Ecological and hydrological instrumentation will be used at a field station in central Nevada to: (1) investigate effects of post-expansion piñon and juniper tree control and exclusionary fencing on components of the water budget and recovery of natural habitats, and (2) assess weather variability and impacts on plant phenology. Subobjective 1D, Hypothesis: Occasional outcrossing facilitates expansion of cheatgrass across the intermountain west by selecting for new genotypes adapted to drier sites and more alkaline soils. Bioinformatic analyses will be applied to newly developed single-nucleotide polymorphism (SNP) markers in order to determine whether outcrossing and heterosis in cheatgrass may facilitate invasion of new environments in Great Basin ecosystems. Subobjective 2A, Hypothesis: Delaying defoliation at least two years post-fire will ensure adequate perennial grass establishment. Defoliation experiments with native perennial grass species will be conducted to assess effects of post-fire grazing on burned rangelands. Subobjective 2B, Hypothesis: Arthropods that feed on juniper seeds vary systematically in their quantitative impacts in rendering seeds inviable. Systematic sampling of juniper berries from several field sites and laboratory dissection of the berries to identify associated arthropods will be used to quantify effects of arthropod seed predators in reducing seed viability of western and Utah juniper as a potential pre-establishment control strategy. Subobjective 2C, Hypothesis: Manipulating the behavior of granivorous rodents through the addition of preferred diversionary seeds to field plots enhances seedling recruitment of Indian ricegrass. Using commonly available commercial seeds, seed augmentation experiments intended to manipulate the behavior of seed-caching rodents (i.e., “diversionary seeding”) will be conducted to develop management strategies for enhancing native grass productivity on Great Basin rangelands.