Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BARC) » Beltsville Agricultural Research Center » Invasive Insect Biocontrol & Behavior Laboratory » Research » Research Project #430038

Research Project: Urban Landscape Integrated Pest Management

Location: Invasive Insect Biocontrol & Behavior Laboratory

2017 Annual Report

1. New delivery system for giving molecular biopesticides to brown marmorated stink bug (BMSB) and other hemipteran insect(s) through feeding. The brown marmorated stinkbug (BMSB) is an invasive insect native to Asia that has emerged as a very prominent insect pest in the United States. BMSB feeds on many plants and poses a considerable threat to specialty crops (apples, stone and pome fruits, grapes, ornamental plants, vegetables, seed crops) as well staple crops (soybean and corn), and is an aggravating indoor nuisance pest. New molecular genetic materials designed to deactivate or silence specific genes critical to BMSB survival were designed; however, methods for delivering these to BMSB by feeding were needed to use them for insect biocontrol. ARS scientists in Beltsville, Maryland, developed a method for delivering molecular biopesticides derived from these genetic materials to BMSB and other hemipteran or sap-feeding insects through feeding. This method allowed for dispersal of insect-controlling genetic materials to insect pests without need to create genetically modified insects. This method could enable widespread deployment of BMSB molecular genetic biopesticide technologies to control this now ubiquitous invasive pest.

2. Methyl benzoate is toxic to invasive insect pests. ARS scientists in Beltsville, Maryland, discovered that a chemical methyl benzoate, isolated from apple juice and naturally-occurring in many other plants, was toxic to various stages of a variety of insect pests, including the invasive brown marmorated stinkbug (BMSB) and spotted wing drosophila (SWD). Against BMSB eggs and SWD larvae and adults, methyl benzoate was found to be 5 to 20 times more commercial organic products available on the market. Because methyl benzoate is considered environmentally friendly, it has great potential to be used as a safer alternative to synthetic pesticides for sustainable agriculture, reducing threats to human health and the environment caused by over-application of conventional synthetic pesticides.

Review Publications
Graves, F., Baker, T., Zhang, A., Keena, M., Hoover, K. 2016. Sensory aspects of trail-following behaviors in the Asian longhorned beetle, anoplophora glabripennis. Journal of Insect Behavior. doi:10.1007/s10905-016-9587-8.
Ghosh, S.B., Hunter, W.B., Park, A.L., Gundersen, D.E. 2017. Double strand RNA delivery system for plant-sap-feeding insects. PLoS One. doi:10.1371.
Ghosh, S.B., Gundersen, D.E. 2017. Double strand RNA-mediated RNA interference through feeding in larval gypsy moth, Lymantria dispar (Lepidoptera: Erebidae). European Journal of Entomology. 114:170-178.
Feng, Y., Zhang, A. 2017. A floral fragrance, methyl benzoate, is an efficient green pesticide. Scientific Reports. 7:42168.
Blackburn, M.B., Sparks, M., Gundersen, D.E. 2016. The genome of the insecticidal chromobacterium subtsugae PRAA4-1 and its comparison with that of chromobacterium violaceum ATC12472. Genomics. doi: 10.1016/j.gdata.2016.08.013.
Short, B.D., Khrimian, A., Leskey, T.C. 2016. Pheromone-based decision support tools for management of Halyomorpha halys in apple orchards: development of a trap-based treatment threshold. Journal of Pest Science. doi: 10.1007/s10340-016-0812-1.
Shirali, S., Guzman, F., Weber, D.C., Khrimian, A. 2017. Expedient synthesis of bisabolenol stink bug pheromones via stereodefined cyclohex-2-enones. Tetrahedron Letters. 58:2066-2068.
Sparks, M., Rhoades, J.H., Nelson, D.R., Kuhar, D.J., Lancaster, J., Lehner, B., Tholl, D., Weber, D.C., Gundersen, D.E. 2017. A transcriptome survey spanning life stages and sexes of the Harlequin bug, Murgantia histrionica. Insects. doi: 10.3390/insects8020055.
Ze, S., Zhuang, L., Wen, Z., Huanan, J., Hao, L., Aiming, Z., Zhang, A., Man-Qun, W. 2016. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plant. Scientific Reports. 6:26043.
Sun, X., Zeng, F., Yan, M., Zhang, A., Wang, M. 2016. Interactions of two odorant-binding proteins from Cnaphalocrocis medinalis Güenée (Lepidoptera: Pyralidae). Insect Molecular Biology. 25(6):712-723.
Sun, X., Zhao, Z., Zeng, F., Zhang, A., Lv, Z., Wang, M. 2016. Functional characterization of a pheromone binding protein from rice leaf-folder cnaphalocrocis medinalis in detecting pheromones and host plant volatiles. Bulletin of Entomological Research. 106(6):781-189.