Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Systems Approach for Managing Emerging Insect Pests and Insect-Transmitted Pathogens of Potatoes

Location: Temperate Tree Fruit and Vegetable Research

Project Number: 2092-22000-021-00-D
Project Type: In-House Appropriated

Start Date: Oct 1, 2015
End Date: Sep 30, 2020

The long-term objective of this project is to provide basic and applied information for the development and transfer of sustainable and environmentally acceptable methods and technologies for management and control of potato psyllid and zebra chip disease in the major potato growing regions of North America. The objectives of our project are listed below. Objective 1: Determine differences among diverse haplotypes of potato psyllid found in the Pacific Northwest in vectoring capabilities, fitness traits, and overwintering capabilities. Subobjective 1A: Determine if psyllid haplotypes differ in fecundity, development rates, and coldhardiness capabilities. Subobjective 1B: Determine if psyllid haplotypes are equally rapid at transmitting Liberibacter to potato, and examine whether all haplotypes can transmit the pathogen from mother-to-daughter (transovarial transmission) and from male-to-female during mating. Objective 2: Determine suitability of non-crop plant species for development, reproduction, and overwintering of potato psyllid and as potential reservoirs of the zebra chip pathogen in the Pacific Northwest. Subobjective 2A: Compare suitability of non-crop host plants for development, fecundity, and overwintering success among haplotypes of potato psyllid. Subobjective 2B: Compare host preferences of psyllid haplotypes. Subobjective 2C: Develop molecular methods to determine which host species are sources of psyllids colonizing potatoes. Subobjective 2D: Determine whether non-crop Solanaceae are suitable hosts for the pathogen causing zebra chip.

Objective 1: Our hypothesis is that haplotypes differ in biological traits that determine their respective risks to growers as vectors of the zebra chip pathogen. Methods to determine how haplotypes differ in biology will involve: 1). Laboratory-based rearing trials to compare haplotypes in fecundity, egg fertility, and developmental rates; 2). Use of a cold-temperature programmable bath to estimate lower lethal temperatures of each haplotype; 3). Use of electrical penetration graph technology combined with potato grow-outs to estimate how rapidly the zebra chip pathogen can be transmitted by each haplotype; 4). Mating assays between infected and uninfected psyllids to determine if the pathogen is transferred between psyllids during mating; 5). Molecular assays of offspring from infected vs uninfected mothers to determine if all haplotypes transfer the pathogen from mother to offspring. Objective 2: Our hypothesis is that different species of non-crop hosts of potato psyllid will vary in how suitable they are to potato psyllid and to the zebra chip pathogen. Moreover, different haplotypes of the psyllid will vary in what species they prefer for egglaying, and in what species are most suitable for psyllid development and survival. Methods to examine plant suitability to potato psyllid and to the zebra chip pathogen, and to compare suitability of different plant species among the psyllid haplotypes will involve: 1). Standard rearing assays with each haplotype on targeted plant species to determine fecundity and development rates on the different plant species; 2). Choice tests with each haplotype to determine whether haplotypes all prefer the same plant species for egglaying, or whether haplotypes differ in preferences; 3). Development of molecular methods to detect the DNA of specific plant species within the guts of field-collected psyllids, and a comparison of gut contents among field-collected psyllids of the different haplotypes; 4). Inoculation trials to determine whether our targeted plant species are suitable hosts for the zebra chip pathogen, and to determine whether all haplotypes of the psyllid transmit the pathogen to all targeted plant species.

Last Modified: 09/21/2017
Footer Content Back to Top of Page