Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Phytochemicals and Healthy Aging (Bridging Project)

Location: Human Nutrition Research Center on Aging

Project Number: 1950-51000-087-00
Project Type: Appropriated

Start Date: May 01, 2014
End Date: Apr 30, 2015

Objective:
LAB: ANTIOXIDANTS Objective 1. Identify and quantify the phytochemical content of: blueberries, cranberries, and grapes; almonds, pistachios, and walnuts; whole grains; and cocoa-based foods; and contribute to future updates of the USDA Database for the Flavonoid Content of Selected Foods. Objective 2. Determine the bioavailability, pharmacokinetics, metabolism and bioactivity of flavonoids and other phytochemicals from antioxidant-rich foods using in vitro experiments, animal models, and human studies.. Objective 3 Investigate the effect of age on quercetin bioavailability and metabolism due to changes in phase II enzyme activity. Objective 4. Test whether exposure of rat dams to a “Western” diet during pregnancy and lactation will increase obese phenotypes in their pups and whether dietary flavonoids, particularly isoflavones, will decrease the obese phenotype. LAB: CAROTENOIDS Objective 1: Determine the ability of bioactive plant-based foods, including carotenoid-rich foods to exert biological functions and affect genomic stability. Objective 2: Determine the vitamin A requirement of healthy U.S. adults.

Approach:
LAB: ANTIOXIDANTS Using advanced chromatographic methods, we will measure the flavonoid content and evaluate the total antioxidant capacity of selected plant foods and the influence of geographical regions, agricultural practices, and processing and storage. A rat model as well as microsomes from various rat tissues will be utilized to determine the effect of age on quercetin bioavailability and metabolism due to changes in phase II enzyme activity. We will explore the possible fetal origins of chronic disease by feeding obesigenic diets to rat dams during pregnancy and lactation and examine the change in obese phenotypes in their pups and test whether dietary flavonoids, particularly isoflavones, will decrease this phenotype. Using healthy older adults, we will determine the bioavailability and distribution of cranberry anthocyanins to blood, urine, and feces. Employing volunteers with coronary heart disease, we will test the effect of almond consumption on biomarkers of oxidative stress, inflammation, and vascular reactivity. LAB: CAROTENOIDS By recruiting older adults (>60 yr, men and post-menopausal women) without and with metabolic syndrome to ingest bioactive plant foods or histidine dipeptide rich foods, we will measure plasma total antioxidant performance, plasma in vivo oxidative stress biomarkers, plasma water-soluble and fat-soluble antioxidants (carotenoids, tocopherol, ascorbic acid, and uric acid), plasma biomedical parameters to determine the ability of bioactive plant-based foods, including carotenoid-rich foods, to exert biological functions and affect genomic stability. Also, to explore a possible correlation between a change in serum apoE and a change in Macular Pigment (MP) density, we will measure HDL subpopulations by non-denaturing 2d gel electrophoresis, immuno-blotting, and image analysis. We will measure lipoproteins, antioxidative capacity, and markers of inflammation in order to better define the mechanism by which decreased body weight is associated with increased MP in humans. Using the stable isotope labeled vitamin A (labeled in three different levels, ^13 C_4 , ^13 C_8 , ^13 C_12 – retinyl acetate) and aphereses-autologues technique on human volunteers, we will measure the enrichment of these labeled retinols in human circulations and mathematical modeling to determine vitamin A bioavailability and the requirement of vitamin A through an intervention trial with various levels of vitamin A.

Last Modified: 9/10/2014
Footer Content Back to Top of Page