Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: BIOPHOTONICS - THE APPLICATION OF NOVEL IMAGING METHODOLOGIES TO LIVESTOCK PRODUCTION RESEARCH

Location: Warmwater Aquaculture Research Unit

Project Number: 6402-31000-010-01
Project Type: Specific Cooperative Agreement

Start Date: Jul 01, 2008
End Date: Jun 30, 2013

Objective:
The objective of this research area is to develop novel imaging technologies aimed at confronting critical issues facing production animal agriculture by monitoring, in real-time, cellular and molecular processing in the context of the living organism. Specific research projects will cover a broad range of research in the cellular and molecular biological sciences, disease-environment interactions, animal-plant interfaces, and growth and developmental physiology with applications aimed at understanding physiological mechanisms with a specific emphasis on enhancing production performance in livestock.

Approach:
As part of this initiative, novel technologies which utilize the photon (light), thermal signatures (heat), spectroscopy and fluorescence will be adapted to cellular- and molecular-based strategies to permit physiological processes to be monitored in a dynamic fashion at the levels of single, living cells to entire organisms in vivo. These non-invasive technologies (e.g., biophotonics, using light as a quantitative indicator beacon of molecular events) will enable the expression of genes, the invasiveness of bacteria, the breakdown of plant or dietary components, or hormone-receptor interactions to be visualized in living systems both in the laboratory, the field, and under traditional livestock production environments. Faculty with expertise in functional imaging will interface with collaborating scientists working in the animal, plant and veterinary sciences to develop these novel systems aimed at addressing specific hypothesis-driven and production-based questions. Results from this initiative will not only develop new models to advance scientific progress in reproductive biology, food safety, disease, plant-animal interactions, and environmental physiology, but will also develop technological advancements that will address experimentally critical questions which heretofore have not been addressable in living systems. Finally, we will expand the use of biophotonic-based technologies to address physiological questions in animals with potential applications to field-based monitoring systems.

Last Modified: 7/28/2014
Footer Content Back to Top of Page