Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: SOIL AND CROP MANAGEMENT SYSTEMS TO SUSTAIN AGRICULTURAL PRODUCTION AND ENVIRONMENTAL QUALITY IN THE NORTHERN GREAT PLAINS Project Number: 3645-12610-001-00
Project Type: Appropriated

Start Date: Apr 15, 2006
End Date: May 09, 2010

Objective:
The overall goal of this project is to develop soil and crop management systems that integrate biological, chemical, and physical principles to sustain agricultural production and environmental quality in the northern Great Plains. The project includes an investigation of the effects of management practices on soil biological, physical, and chemical properties; this information will be integrated with an assessment of one approach to restore eroded soil resources to indicate land management practices that may enhance long-term soil productivity, farm profitability, and environmental benefits in the northern Corn Belt. Specific objectives are to (a) determine the impact of management strategies on nutrient, soil carbon, and organic matter dynamics; and (b) to evaluate the impact of landscape restoration (soil movement from areas of soil deposition to areas of topsoil depletion) on soil properties, soil productivity, and environmental quality in severely eroded undulating landscapes.

Approach:
Field experiments will be conducted in several sets of long-term research plots established by the North Central Soil Conservation Research Laboratory staff, including field plots implementing organic and conventional management practices that were established in 2002. The effect of organic and conventional land management practices on the structure of the soil biological community will be assessed in these plots through microbial biomass carbon and nitrogen and fatty acid methyl ester (FAME) profiles. The effect of nitrogen management practices on nitrogen availability will be evaluated by monitoring nitrogen mineralization. In separate field experiments, the soil and economic impacts of integrating corn stover harvest (for biofuel) into corn-soybean rotations will be evaluated by monitoring changes in soil properties and economic yield at different corn stover removal rates. Additional field experiments will be conducted to examine the effect of the timing and intensity of tillage, crop rotation, and planting date on carbon storage, crop growth, and economic yield. A five-year on-farm experiment will be conducted to evaluate the impact of landscape restoration by assessing (a) changes in soil chemical and physical properties (as a function of depth and landscape position) and topography that occur as a result of landscape restoration, (b) the productivity of restored and unrestored landscapes as a function of landscape position, (c) the economic costs and benefits of landscape restoration, (d) pesticide sorption and transformation in soils (as a function of landscape position and depth) in restored and unrestored landscapes, (e) the dynamics of soil biota (microarthropods) before and after soil movement for landscape restoration; and (f) the impact of landscape restoration and subsequent tillage on future soil erosion by tillage and water (using a predictive model).

Last Modified: 12/18/2014
Footer Content Back to Top of Page