Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: DRYLAND CROPPING SYSTEMS MANAGEMENT FOR THE CENTRAL GREAT PLAINS

Location: Central Plains Resources Management Research

Project Number: 5407-12130-006-00
Project Type: Appropriated

Start Date: Jun 01, 2006
End Date: May 31, 2011

Objective:
Overall Project Goal: Develop long-term sustainable soil and crop management practices for the Central Great Plains Region (CGPR) and identify technologies that maximize the use of the region’s soil and water resources with minimal negative environmental impact. Objectives: 1. Develop adaptive management practices and document their benefits to optimize yield and enhance ecosystem services for CGPR dryland agricultural systems most vulnerable to potential adverse climate changes with an emphasis on precipitation and temperature. 2. Quantify microbial plant associations and their effects on plant productivity in no-till dryland cropping systems. 3. Develop best management practices for remediation/restoration of degraded soils in the CGPR. 4. Development of alternative bio-fuel specialty crops for incorporation into alternative dryland cropping systems. 5. Quantify how localized climate, topography, soils and management that vary across landscapes affect crop yields, carbon sequestration, and nutrient cycling for dryland agricultural systems and to develop adaptation options to mitigate risks for dryland cropping systems associated with climate change.

Approach:
Field, and laboratory experiments and modeling efforts will be conducted to determine the adaptability of current dryland cropping systems to potential changes in climate (primarily drought the result of declining precipitation and/or increases in evaporative demand) in the region. These experiments and modeling efforts will include studies to evaluate and test the adaptability of dryland crop rotations across a regional site network that varies in soil type, climate and elevation (topography). Experiments will include the effects of residue management, nutrient management and crop ecological management to maximize carbon fixation/sequestration and crop yield and to reduce dependence on pesticides and other ag-chemicals. The effect of rotation and soil management on soil chemical, physical and biological quality will be also quantified. Crop and soil simulation models will be calibrated/evaluated for prediction accuracy of yield and soil transformations using 102 years of climate data and multiple years of crop rotation results to extrapolate research at CGPRS to other locations in the region. Economic risk assessment of intensive dryland rotations will be calibrated to determine economic feasibility.

Last Modified: 9/10/2014
Footer Content Back to Top of Page