Using Manure Evaluation as a Diagnostic Tool for Feeding Programs

Mary Beth Hall
U. S. Dairy Forage Research Center
USDA - Agricultural Research Service
Madison, WI
Why evaluate manure?

Manure evaluation is a good way to look at the interaction of the cow and her ration. When used in context with the other things we evaluate, it can give you an idea of how well the rumen is functioning and where and how well feeds are being digested. There’s a sound, biological basis for why manure looks the way it does.
It’s not “normal” just because we’re used to seeing it that way.

Just because we are used to seeing manure look one way doesn’t mean that it’s normal. To help us reach our goals for milk production and herd health, we need to learn what is normal or desirable. Manure can be used as an objective measure of what is really happening in the herd, because . . .
. . . you must remember . . .

. . . the cows are always right.
How can manure tell you what’s happening in the rumen?
Rumen function determines fecal particle size.

The rumen determines particle size in manure. For the rumen to work well, cows must eat enough chewable and total fiber to maintain rumination and prevent ruminal acidosis. The mat of fiber in the rumen retains feed for more complete digestion.
Rumen function determines fecal particle size.

Rumination and digestion by microbes in the rumen break down fiber and feed particle size. If the cow does not eat enough fiber (chewable and total) to maintain rumination and rumen function, feed can pass out of the rumen more quickly and in larger particles than it should; if this happens, it is not as well digested.
Rumen function determines fecal particle size.

If the rumen is working well, there should be few feed particles in the manure more than 0.5 inches long, and little recognizable feed (cottonseed with lint, green grass, etc.).

Granted, high producing cows eat more and rumen contents pass more quickly; so more undigested feed or slightly longer particles may show up in the manure. But do not use this as an excuse for accepting poor rumen function that is due to other causes.
Where does feed digest?

<table>
<thead>
<tr>
<th>Rumen (Fermentation)</th>
<th>Small Intestine (Enzymes)</th>
<th>Cecum & Large Intestine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Protein</td>
<td>True Protein</td>
<td>Crude Protein</td>
</tr>
<tr>
<td>Carbohydrates (NDF & NFC)</td>
<td>Starch</td>
<td>Carbohydrates (NDF & NFC)</td>
</tr>
<tr>
<td></td>
<td>Lipids</td>
<td></td>
</tr>
</tbody>
</table>

One of the reasons manure looks the way it does is because of where feed digests. Some nutrients can be digested in the rumen, some in the small intestine, and some in the hindgut (cecum and large intestine). The extent to which feed ferments in the large intestine alters the way manure looks.

The following slide shows the fates of different fermentation products depending on where they are produced (rumen or hindgut).
Fates of fermentation products.

- **Rumen**
 - Absorbed
 - Recycled
 - Absorbed
 - Belch/Bloat

- **Hindgut**
 - Absorbed
 - Feces

- **Fermentation Products**
 - Organic acids
 - Microbial protein
 - Gas (CO₂ & Methane)

- **Products**
 - Absorbed
 - Feces
When the rumen is working well, more feed ferments there and less passes to be digested in the small intestine or fermented in the hindgut (cecum and large intestine). Some hindgut fermentation is normal.
Where does the feed ferment?

When the rumen is not working well, more feed ferments in the hindgut. Like rumen microbes, hindgut microbes ferment feed to produce acid, gas, and microbes. Increased hindgut fermentation will change the consistency and appearance of manure. It can cause diarrhea, foamy manure, or mucin casts (when the gut is damaged).
Evaluating the manure:

This very foamy manure with the tiny pieces of grain in it shows what manure looks like when there is gas production from too much hindgut fermentation. The manure can have a low density from the amount of trapped gas bubbles, or else it can appear as very bubbly diarrhea. Often, manure like this comes out of cows in a solid stream.

If you have ever tapped a cow for bloat, you’ve seen the gassy rumen contents come out in a solid stream -- that’s essentially what the foamy manure can look like.
Evaluating the manure:

“Lots” of undigested feed coming through in the manure suggests problems with rumen function, feed processing, or feeding management. This undigested feed represents feed that never had a chance to be converted to milk.

When you see recognizable undigested feed such as green grass, orange citrus pulp, or cottonseed with the lint still intact, something is wrong with the rumen (often not enough effective fiber/too much starch).
Evaluating the manure:

You might also see undigested feed if cows are slug feeding (eating grain or TMR in large meals) or when corn is not ground to a fine enough particle size. If it needs to be ground more finely, make sure you have enough effective fiber so that the cows aren’t tipped over into ruminal acidosis due to the more digestible starch.

This is not normal
Evaluating the manure:

This picture shows a sample of ground corn sieved through official engineering screens. The particles retained on screens 4 and 8 are too coarsely ground and are what is usually seen in manure. For high-producing cows eating a lot of feed, you may see a bit more grain come through, but ask yourself if it’s “reasonable.” Evaluating feed efficiency (milk weight/dry matter intake weight) may help with this decision call.
Evaluating the manure:

When diarrhea is due to a ration problem and not disease, we typically associate it with some type of irritation to the hindgut, possibly from the excess production of acid where it can’t be well buffered.

This is not normal.
Evaluating the manure:

Moldy, spoiled feeds, like this clump of bad silage, can also cause diarrhea to appear sporadically across the herd (not all cows eat the spoiled portion). Check for spoiled or moldy feeds and do not feed them.
Evaluating the manure:

Mucin casts:
Mucin casts are used in beef feedlot management as an indicator of ruminal acidosis. They are shed out of the large intestine. If you drag the tip of your boot across a cow pie, and something moves after your boot has passed, it may be a mucin cast. They can be found in manure of any consistency.

This is not normal
Mucin casts:
This is what they look like if they are cleaned up in water. They look like sausage casings. They can appear as small scraps or pieces that are a foot or more long. They can be brownish like this, grayish, or darker in color.

3.5 inches (9 cm)
Mucin casts:

Where do these mucin casts come from? If too much endotoxin is formed in the hindgut, the normal gut lining (A) can be damaged or destroyed (E, F). When this damage occurs, mucin, or fibrin, produced by the cow covers the damage. This mucin is shed out later. Bottom line: mucin casts are an indication of abnormal damage to the gut.

Henrikson et al., 1989. Laboratory Investigation 60:72-87. Figure reproduced with permission. ©Nature, http://www.nature.com/
Evaluating the manure:

If a group of cows is all eating the same ration, about 5% of them will have manure different from the rest of the group. Also, if a group is all eating the same ration, their manure should be similar (whether it’s good, bad or indifferent).

If there is much variation in the manure in a group, figure that the cows are not eating the same ration. This is usually due to cows sorting their feed, cows consuming clumps of spoiled feed, or different feeds being offered separately so cows can choose what they eat (they may each choose a different ration).
Getting started with manure evaluation:

- Walk the pens to get an idea of the variation in groups, between groups, and between rations.
- Also keep your eyes open to evaluate rumination (are cows chewing their cuds?), body condition score, etc., as well as manure.
- Collect 4-6 cow-pie samples per group to evaluate for particle size.
- Take samples that give a fair representation of the variation in the group.
Cleaning samples for particle size evaluation:

Step #1

Completely transfer the contents of a sample cup to the screen (1/16th-inch to 1 mm openings). Rinse the cup and lid completely, and you can put the rinsed sample back into the cup for later comparison against the other samples.
Cleaning samples for particle size evaluation:

Step #2

With a gentle force of water, rinse the sample until the water runs clear. You may need to scrape your hand along the inside of the screen to clear it if it plugs. Sometimes you will note clay-like balls of manure (not normal) that plug the screen. Note them, but see if you can rinse them through.
Cleaning samples for particle size evaluation:

Step #3

Finally, after rinsing, you can see the particles hidden in the manure.
Step #4
The best way to clean the screen is to rinse it backwards.
Both of these rinsed, dried manure samples came from cows eating a ryegrass silage-based diet. **LEFT:** Small, well-digested particles from a ‘good’ cow pie. **RIGHT:** Coarse, poorly digested particles from a pile of diarrhea. Both samples came from the same feeding group, suggesting that the cows had been sorting their feed. You do not want to see much coarse material (0.5 inches or longer) in the manure.
Evaluating the screened materials:

The inset picture (at right) is of manure that shows good particle size from a sorghum silage-based diet. Particles will look different depending upon the fiber source.
Evaluating the screened materials:

In this picture you can see a whole cottonseed with the lint still on it (arrow). Plus, the particle size is rather coarse. Cows not only weren’t getting enough effective fiber, they were also sorting their feed.

Black cottonseed with the lint fermented off is not so much of an issue -- at least the seed stayed in the rumen long enough for that fermentation to occur.

33.6% roughage
19.1% corn silage
5.5% cottonseed hulls
9.0% alfalfa hay

This is not normal
Evaluating the screened materials:

This came from a pool of bubbly, greenish diarrhea; who would have guessed that this coarse material was hidden in it? The very coarse forage in the manure indicates very poor rumen function and a sick cow. You may be able to make out a 6-inch piece (above green line) of bermudagrass hay that managed to make its way through the gut.
Evaluating the screened materials:

This shows why it’s a good idea to process corn silage. This grain still had its contents -- starch and protein that wasn’t available to the cow. We had to add more corn meal to the herd’s ration to make up for the corn grain from the silage that wasn’t digestible.
Evaluating the screened materials:

Differences in the amount of solids in a set volume reflect differences in the amount of gas or liquid in the manure. If there’s much liquid or gas in a manure sample, you will typically get less total solids remaining after screening. This may suggest more hindgut fermentation than you’d like.
What to look at (besides manure) when evaluating a herd:

- **Cows:** Body condition score, coat, lameness, rumination....
- **Feed:** Mold/dust, analysis, consistency, mixing, existence....
- **Bunk:** Mold, clean, fresh, heating, mixing, weigh back....
- **Water:** Clean, fresh, available....
- **Facilities:** Comfortable, used, clean, ventilated....
- **Employees:** How they treat the animals....
What could cause what we see?

<table>
<thead>
<tr>
<th>What you see</th>
<th>Possible dietary causes (not disease)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose manure</td>
<td>• High protein (total or soluble)
• Salts or magnesium oxide in ration
• High water intake (heat stress)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>• Spoiled, moldy feed or silage
• Ruminal acidosis</td>
</tr>
<tr>
<td>Foamy manure</td>
<td>• Ruminal acidosis
• Increased hindgut fermentation</td>
</tr>
<tr>
<td>Mucin casts</td>
<td>• Ruminal acidosis
• Increased hindgut fermentation</td>
</tr>
<tr>
<td>Large particles, undigested feed</td>
<td>• Cows are sorting feed; slug feeding
• Not enough chewable forage/feed
• Ruminal acidosis</td>
</tr>
<tr>
<td>Manure variable in a feeding group</td>
<td>• Cows are sorting feed; slug feeding
• Spoiled, moldy feed or silage (spoilage does not usually mix uniformly)</td>
</tr>
</tbody>
</table>
What could cause what we see?

Aiming for an energy number without due consideration of fiber, effective fiber, and type of energy (starch, fat, sugars, etc.).

How do we fix it?

Balance the ration for effective fiber, energy types, etc. Don’t formulate focused only on the energy value. This means formulating the ration, and then going back to the cows to see what they think of your efforts. Then reformulate or change management as needed to get the desired response.
What could cause what we see?

Cows have very few hobbies, so they sort their feed.

How do we fix it?

Come up with rations that cows can’t sort. Lou Armentano (University of Wisconsin) has suggested that if a particle is longer than a cow’s mouth is wide, she can sort it. That means all the feed that’s mixed in a TMR needs to be chopped 1 to 2 inches long and mixed in a moist TMR that can’t be sorted.

If you see cows putting their noses down, nudging the feed around, and then diving for the bottom of the bunk to eat the grain that sifted out, they are trying to sort.
How do we fix it?

We shouldn’t help cows in their search to find ways to sort. This means mixing the TMR correctly in the first place.

But also be sure you don’t grind the forage so that there’s little effective fiber value left.

If you are feeding feeds separately, cows will eat what they want, and cows are really very poor nutritionists. They can – and have, and will again – eat themselves sick (at least some of them).
What could cause what we see?
Heat stress can cause ruminal acidosis or signs that look like it. Heat-stressed cows slug feed, ruminate less, and try more vigorously to sort their feed.

How do we fix it?
Use standard heat abatement practices for some relief; modify the diet to reduce risk (more fiber from digestible, palatable forage and reduced starch?); and just be aware of the many ways heat stress affects cows.
In Summary . . .

Manure evaluation is qualitative and should be used with other herd observations to build a case as to what ration or management changes are needed.

- Manure appearance
- Fecal particle size
- Undigested feed
- % Rumination
- Eating behavior
- Animal health
- Production
- Environment
- Management
- Feed efficiency
And remember . . .

. . . the cows are always right.
This material courtesy of:

U.S. Dairy Forage Research Center

USDA-Agricultural Research Service
1925 Linden Dr. West
Madison, WI 53706
608-890-0050
Contact: Lori.Bocher@ars.usda.gov

www.ars.usda.gov/mwa/madison/dfrc

Material may be copied and used for educational purposes.

USDA is an equal opportunity provider, employer and lender.