Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: OPTIMIZING IRRIGATION MANAGEMENT FOR HUMID CLIMATES

Location: Cropping Systems and Water Quality Research

Title: Variable rate nitrogen with on-the-go sensors for cotton

Authors
item Stevens, G - UNIVERSITY OF MISSOURI
item Scharf, P - UNIVERSITY OF MISSOURI
item Dunn, D - UNIVERSITY OF MISSOURI
item Phillips, A - UNIVERSITY OF MISSOURI
item Rhine, M - UNIVERSITY OF MISSOURI
item Vories, Earl

Submitted to: Electronic Publication
Publication Type: Other
Publication Acceptance Date: February 5, 2009
Publication Date: N/A

Technical Abstract: Remote sensing and “on-the-go” equipment-mounted sensors are the two most studied precision technologies for determining nitrogen needs in cotton. In the Mid-South, attempts using aerial and satellite imagery have produced limited success due to interference from cloud cover at critical times in the growing season. The time demand for someone to process image data into N application maps is another restraint. Commercial scale machinery that can accurately vary N rates on-the-go based on the leaf color reflectance is now available. The beauty of mounting sensors on application equipment is that there is no time delay between detecting N deficiency and fertilizer application to correct the problem. Regardless of the plant detection method (remote sensing or equipment sensors), field calibration research is needed to find nitrogen fertilizer response algorithms for the technologies. Algorithms are used to prescribe the minimum N needed to allow the cotton to reach its maximum economical yield potential. The objective this study is to provide cotton growers with information on using GreenSeeker TM, Crop Circle TM, and CropScan TM equipment-mounted sensors for applying nitrogen in cotton on silt loam, sandy loam, and clay soils. We began studying light sensors for cotton management in 2006 before we received funding. In 2007, we received a grant from the Missouri State Support Committee and Cotton Incorporated. The primary focus of field work in 2006 and 2007 was to develop algorithms for each sensor, determine the optimum height for placing sensors above the cotton canopy, and evaluate the accuracy of using sensors for N management at different cotton growth stages, times of day, and levels of leaf wetness. In 2008, we conducted field tests evaluating the yield impact of delaying the first application of N to mid-square and first bloom. We also conducted an on-farm sensor evaluation in Southeast Missouri comparing a farmer’s standard side-dress rate in alternate strips with variable rate N applied based on algorithms developed from 2006-2007 small plot calibration research. In small plot tests, sensor measurements were collected in 10-day intervals from mid-June to late-August. A high-clearance tractor with multi-spectral sensors mounted on a boom was driven through all plots. Data loggers in the tractor cab recorded cotton leaf reflectance data collected from Crop Circle Model ACS-210 (Holland Scientific; Lincoln, NE), GreenSeeker (N Tech Industries; Ukiah, CA) and CropScan MSR87 (CropScan; Rochester, MN). In 2008, we also collect height with an experimental ultrasound sensor. At each sampling date, leaf chlorophyll meter readings from the fourth node from the apex were collected with a SPAD-502 meter (Minolta Camera Co, LTD.; Tokyo, Japan) and petiole NO3- concentration also from fourth node. In 2006, we found the economically optimal N rate (EONR) was 60 lb N/acre minus 1 on sandy loam, 0 lb N/acre minus 1 on silt loam, and 200 lb N/acre minus 1 on clay. In 2007, the EONR was 45 lb N/acre minus 1 on sandy loam, 80 lb N/acre minus 1 on silt loam, and 175 lb N/acre minus 1 on clay. We found that mounting sensor 20 inches above the canopy worked best, calibration equations at mid square and first flower were not significantly different, and Normalized Difference Vegetation Index (NDVI) and the ratio of visible and near infrared reflectance (VIS/NIR) worked equally well. Although each of the three sensors performed well, we recommend using an adjustment equation with Greenseeker to compensate for deviations in time of day. Cotton yields in 2008 were lower when first N application was delayed to early flower. In the on-farm test in 2008, strips with N applied based on Crop Circle readings averaged 46 lb N/acre minus 1 less fertilizer compared to the grower rate. Readings from a picker yield monitor indicated average lint yields were 1138 lb lint acre minus 1 in strips with variable rate N applied and 1209 lb lint acre minus 1 with the grower N rate.

Last Modified: 4/17/2014
Footer Content Back to Top of Page