Skip to main content
ARS Home » Plains Area » Grand Forks, North Dakota » Grand Forks Human Nutrition Research Center » Dietary Prevention of Obesity-related Disease Research » Research » Publications at this Location » Publication #98005

Title: COPPER AND SIGNAL TRANSDUCTION: PLATELETS AS A MODEL TO DETERMINE THE ROLE OF COPPER IN STIMULUS-RESPONSE COUPLING

Author
item Johnson, William

Submitted to: Biofactors
Publication Type: Review Article
Publication Acceptance Date: 2/24/1999
Publication Date: N/A
Citation: N/A

Interpretive Summary: Platelets from copper-deficient rats have been used as a model to investigate the role of copper in receptor-mediated cellular responses. Copper deficiency doubles the rate of dense granule secretion and increases myosin association with the platelet cytoskeleton following thrombin stimulation. Mechanisms underlying the effects of copper deficiency on thrombin-induced signals that elicit dense granule secretion involve suppression of protein kinase C activity and impairment of Ca**2+ release from intracellular stores. Copper deficiency also reduces the cellular GTP content of platelets. This may limit receptor effector coupling through GTP-dependent regulatory proteins leading to protein kinase C activation and the release of Ca**2+ from intracellular stores. The reduction in GTP content during copper deficiency results from its utilization to maintain cellular ATP levels in response to severely inhibited cytochrome c oxidase activity in platelet mitochondria. Thus, the role of copper in maintaining normal signal transduction may be indirectly related to its biological function in mitochondria.

Technical Abstract: Platelets from copper-deficient rats have been used as a model to investigate the role of copper in receptor-mediated cellular responses. Copper deficiency doubles the rate of dense granule secretion and increases myosin association with the platelet cytoskeleton following thrombin stimulation. Mechanisms underlying the effects of copper deficiency on thrombin-induced signals that elicit dense granule secretion involve suppression of protein kinase C activity and impairment of Ca**2+ release from intracellular stores. Copper deficiency also reduces the cellular GTP content of platelets. This may limit receptor effector coupling through GTP-dependent regulatory proteins leading to protein kinase C activation and the release of Ca**2+ from intracellular stores. The reduction in GTP content during copper deficiency results from its utilization to maintain cellular ATP levels in response to severely inhibited cytochrome c oxidase activity in platelet mitochondria. Thus, the role of copper in maintaining normal signal transduction may be indirectly related to its biological function in mitochondria.